Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning to Identify Inappropriate Antimicrobial Prescriptions

  • Conference paper
Artificial Intelligence in Medicine (AIME 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7885))

Included in the following conference series:

  • 2064 Accesses

Abstract

Inappropriate antimicrobial prescribing is a major clinical problem and health concern. Several hospitals rely on automated surveillance to achieve hospital-wide antimicrobial optimization. The main challenge in implementing these systems lies in acquiring and updating their knowledge. In this paper, we discuss a surveillance system which can acquire new rules and improve its knowledge base. Our system uses an algorithm based on instance-based learning and rule induction to discover rules for inappropriate prescriptions. The algorithm uses temporal abstraction to extract a meaningful time interval representation from raw clinical data, and applies nearest neighbor classification with a distance function on both temporal and non-temporal parameters. The algorithm is able to discover new rules for early switch from intravenous to oral antimicrobial therapy from real clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dellit, T.H., Owens, R.C., McGowan, J.E., Gerding, D.N., Weinstein, R.A., Burke, J.P., Huskins, W.C., Paterson, D.L., Fishman, N.O., Carpenter, C.F., Brennan, P.J., Billeter, M., Hooton, T.M.: Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 44(2), 159–177 (2007)

    Article  Google Scholar 

  2. Valiquette, L., Cossette, B., Garant, M.P., Diab, H., Pepin, J.: Impact of a reduction in the use of high-risk antibiotics on the course of an epidemic of clostridium difficile-associated disease caused by the hypervirulent nap1/027 strain. Clin. Infect. Dis. 45(suppl. 2), 112–121 (2007)

    Article  Google Scholar 

  3. Shahar, Y.: A framework for knowledge-based temporal abstraction. Artif. Intell. 90(1-2), 79–133 (1997)

    Article  MATH  Google Scholar 

  4. Bellazzi, R., Larizza, C., Magni, P., Bellazzi, R.: Temporal data mining for the quality assessment of a hemodialysis service. Artif. Intell. Med. 34(1), 25–39 (2005)

    Article  Google Scholar 

  5. Concaro, S., Sacchi, L., Cerra, C., Fratino, P., Bellazzi, R.: Mining healthcare data with temporal association rules: Improvements and assessment for a practical use. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds.) AIME 2009. LNCS, vol. 5651, pp. 16–25. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Zaki, M., Lesh, N., Ogihara, M.: Planmine: Predicting plan failures using sequence mining. Artif. Intell. Rev. 14(6), 421–446 (2000)

    Article  MATH  Google Scholar 

  7. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th Int. Conf. on Very Large Data Bases, VLDB 1994, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)

    Google Scholar 

  8. Hartge, F., Wetter, T., Haefeli, W.E.: A similarity measure for case based reasoning modeling with temporal abstraction based on cross-correlation. Comput. Methods Programs Biomed. 81(1), 41–48 (2006)

    Article  Google Scholar 

  9. Montani, S., Portinale, L., Leonardi, G.: Case-based retrieval to support the treatment of end stage renal failure patients. Artif. Intell. Med. 37(1), 31–42 (2006)

    Article  Google Scholar 

  10. Domingos, P.: Unifying instance-based and rule-based induction. Machine Learning 24(2), 141–168 (1996)

    MathSciNet  Google Scholar 

  11. Chawla, N., Japkowicz, N., Kotcz, A.: Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter 6(1), 1–6 (2004)

    Article  Google Scholar 

  12. Smyth, P., Goodman, R.M.: Rule induction using information theory. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 159–176. AAAI/MIT Press (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beaudoin, M., Kabanza, F., Nault, V., Valiquette, L. (2013). Learning to Identify Inappropriate Antimicrobial Prescriptions. In: Peek, N., Marín Morales, R., Peleg, M. (eds) Artificial Intelligence in Medicine. AIME 2013. Lecture Notes in Computer Science(), vol 7885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38326-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38326-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38325-0

  • Online ISBN: 978-3-642-38326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics