Nothing Special   »   [go: up one dir, main page]

Skip to main content

Single- and Multi-label Prediction of Burden on Families of Schizophrenia Patients

  • Conference paper
Artificial Intelligence in Medicine (AIME 2013)

Abstract

Whereas there exist questionnaires used to measure the level of anxiety or depression in caregivers of schizophrenia patients, sometimes these symptoms take too long to be detected and the treatment needed is more difficult than it would have been if the burden had been detected at an earlier stage. In this paper we propose the use of automatic classification techniques to predict the output of such questionnaires (Hamilton and ECFOS-II), making it possible to anticipate an appropriate treatment or advice for the family caregivers from Primary Care consultations. In particular, we apply standard (one class variable) and multi-dimensional classification approaches to predict caregiver anxiety, depression and answers to questionnaires. Our study has been carried out with a dataset containing data from 180 schizophrenia patients and their caregivers, and the results are very promising, obtaining accuracies of approximately 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angermeyer, M., Khn, L., Goldstein, J.: Gender and the course of schizophrenia: differences in treated outcomes. Schizophrenia Bulletin 16(2), 293–307 (1990)

    Article  Google Scholar 

  2. Association, A.P.: DSM-IV-TR. Breviario (2002)

    Google Scholar 

  3. Dyck, D.G., Short, R., Vitaliano, P.P.: Predictors of burden and infectious illness in schizophrenia caregivers. Psychosom. Med. 61(4), 411–419 (1999)

    Google Scholar 

  4. Finkelhor, D., Gelles, R., Hotaling, G., Strauss, M.: The Dark Side of Families: Current Family Violence Research. SAGE (1983)

    Google Scholar 

  5. Grandón, P., Jenaro, C., Lemos, S.: Primary caregivers of schizophrenia outpatients: burden and predictor variables. Psychiatry Res. 158(3), 335–343 (2008)

    Article  Google Scholar 

  6. Hamilton, M.: The assessment of anxiety states by rating. British Journal of Medical Psychology 32, 50–55 (1959)

    Article  Google Scholar 

  7. McDonell, M., Short, R., Berry, C.M.: Burden in schizophrenia caregivers: Impact of family psychoeducation and awareness of patient suicidality. Family Process 42, 91–103 (2003)

    Article  Google Scholar 

  8. Peralta Martin, V., Cuesta Zorita, M.: Validation of positive and negative symptom scale (panss) in a sample of Spanish schizophrenic patients. Actas Luso Esp. Neurol. Psiquiatr. Cienc. Afines 22(4), 171–177 (1994)

    Google Scholar 

  9. Quinlan, J.R.: C4.5: Programs for Machine Learning, 1st edn. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann (1992)

    Google Scholar 

  10. Ramos-Brieva, J.A., Cordero-Villafafila, A.: A new validation of the hamilton rating scale for depression. J. Psychiatr. Res. 22(1), 21–28 (1988)

    Article  Google Scholar 

  11. Tsoumakas, G., Katakis, I.: Multi label classification: An overview. International Journal of Data Warehousing and Mining 3(3), 1–13 (2007)

    Article  Google Scholar 

  12. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: A java library for multi-label learning. Journal of Machine Learning Research 12, 2411–2414 (2011)

    MathSciNet  Google Scholar 

  13. Tsoumakas, G., Vlahavas, I.P.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Vilaplana, M., Ochoa, S., Martinez, A., Villalta, V., Martinez-Leal, R., Puigdollers, E., Salvador, L., Martorell, A., Muñoz, P.E., Haro, J.M.: Validation in Spanish population of the family objective and subjective burden interview (ECFOS-II) for relatives of patients with schizophrenia. Actas Esp. Psiquiatr. 35(6), 372–381 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bermejo, P. et al. (2013). Single- and Multi-label Prediction of Burden on Families of Schizophrenia Patients. In: Peek, N., Marín Morales, R., Peleg, M. (eds) Artificial Intelligence in Medicine. AIME 2013. Lecture Notes in Computer Science(), vol 7885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38326-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38326-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38325-0

  • Online ISBN: 978-3-642-38326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics