Nothing Special   »   [go: up one dir, main page]

Skip to main content

TurboTensors for Entropic Image Comparison

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7877))

  • 1895 Accesses

Abstract

In this paper we propose an information-geometric method for comparing superpixel (turbopixel) images. Turbopixels are encoded by tensors and they are referred to as TurboTensors. Our methodology has three ingredients. Firstly, we formulate the comparison of the turbopixels topology in terms of the non-rigid alignment of the Isomap embedding of the weighted adjacency matrices; we propose a multi-dimensional information-theoretic dissimilarity measure. Secondly, we formulate the comparison of bags-of-turbopixels through tangent spaces de-projection and multi-dimensional and non-parametric information-theoretic dissimilarity measures. Thirdly, we combine the two latter elements into a flexible energy function whose minimization yields the optimal matching of superpixels images as well as their similarity. In our experiments we show that the proposed method is a useful tool for finding clusters in image sequences. Finally, we show that our approach outperforms state-of-the-art image comparison through non-rigid and affine matching of SURF features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV, pp. 10–17 (2003)

    Google Scholar 

  2. Gu, C., Lim, J., Arbelaez, P., Malik, J.: Recognition using regions. In: CVPR, pp. 1030–1037 (2009)

    Google Scholar 

  3. Vazquez-Reina, A., Avidan, S., Pfister, H., Miller, E.: Multiple hypothesis video segmentation from superpixel flows. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 268–281. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: ICCV (2011)

    Google Scholar 

  5. Boltz, S., Nielsen, F., Soatto, S.: Earth mover distance on superpixels. In: ICIP, pp. 4597–4600 (2010)

    Google Scholar 

  6. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  7. Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. International Journal of Computer Vision 66(1), 41–66 (2006)

    Article  MathSciNet  Google Scholar 

  8. Zhang, F., Hancock, E.: New riemannian techniques for directional and tensorial image data. Pattern Recognition 43(4), 1590–1606 (2010)

    Article  MATH  Google Scholar 

  9. Myronenko, A., Song, X.B.: Point-set registration: Coherent point drift. EEE Trans. on Pattern Analysis and Machine Intelligence 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  10. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  11. Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., Ayache, N.: Riemannian elasticity: A statistical regularization framework for non-linear registration. In: MICCAI, vol. 2, pp. 943–950 (2005)

    Google Scholar 

  12. Chiang, M.C., Leow, A., Klunder, A., Dutton, R., Barysheva, M., Rose, S., McMahon, K., de Zubicaray, G., Toga, A., Thompson, P.: Fluid registration of diffusion tensor images using information theory. IEEE Trans. Med. Imaging 27(4), 442–456 (2008)

    Article  Google Scholar 

  13. Henze, N., Penrose, M.: On the multi-variate runs test. Annals of Statistics 27, 290–298 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, J., Rafsky, L.: Mutivariate generalization of the wald-wolfowitz and smirnov two-sample tests. Annals of Statistics 7(4), 697–717 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stowell, D., Plumbley, M.: Fast multidimensional entropy estimation by k-d partitioning. IEEE Signal Processing Letters 16(6), 537–540 (2009)

    Article  Google Scholar 

  16. Escolano, F., Hancock, E., Lozano, M.: Graph matching through entropic manifold alignment. In: CVPR, pp. 2417–2424 (2011)

    Google Scholar 

  17. Leonenko, N., Pronzato, L., Savani, V.: A class of renyi information estimators for multidimensional densities. Annals of Statistics 36(5), 2153–2182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bay, H., Ess, A., Tuytelaars, T., Gool, L.J.V.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Escolano, F., Hancock, E.R., Bonev, B., Lozano, M.A. (2013). TurboTensors for Entropic Image Comparison. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics