Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Algorithm for Maximum Common Subgraph of Planar Triangulation Graphs

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7877))

Abstract

We propose a new fast algorithm for solving the Maximum Common Subgraph (MCS) problem. MCS is an NP-complete problem. In this paper, we focus on a special class of graphs, i.e. Planar Triangulation Graphs, which are commonly used in computer vision, pattern recognition and graphics. By exploiting the properties of Planar Triangulation Graphs and restricting the problem to connected MCS, for two such graphs of size n and m and their maximum common subgraph of size k, our algorithm solves the MCS problem approximately with time complexity O(nmk).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years of Graph Matching in Pattern Recognition. International Journal of Pattern Recognition and Aritificial Intelligence 18(3), 265–298 (2004)

    Article  Google Scholar 

  2. Bunke, H., Shearer, K.: A Graph Distance Metric Based on the Maximal Common Subgraph. Pattern Recognition Letters 19(3), 255–259 (1998)

    Article  MATH  Google Scholar 

  3. Shearer, K., Bunke, H., Venkatesh, S.: Video Indexing and Similarity Retrieval by Largest Common Subgraph Detection Using Decision Trees. Pattern Recognition 34(5), 1075–1091 (2001)

    Article  MATH  Google Scholar 

  4. Schenker, A., Last, M., Bunke, H., Kandel, A.: Classification of Web Documents Using Graph Matching. International Journal of Pattern Recognition and Artificial Intelligence 18(03), 475–496 (2004)

    Article  Google Scholar 

  5. Dobkin, D., Friedman, S., Supowit, K.: Delaunay Graphs Are Almost as Good as Complete Graphs. Discrete and Computational Geometry 5(4), 399–407 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Berg, M., Cheong, O., Kreveld, M., Overmars, M.: Computational geometry: algorithms and applications. Springer (2008)

    Google Scholar 

  7. Finch, A., Wilson, R., Hancock, E.: Matching Delaunay Graphs. Pattern Recognition 30(1), 123–140 (1997)

    Article  MATH  Google Scholar 

  8. Shin, D., Tjahjadi, T.: Similarity Invariant Delaunay Graph Matching. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR & SPR 2008. LNCS, vol. 5342, pp. 25–34. Springer, Heidelberg (2008)

    Google Scholar 

  9. Matouěk, J., Thomas, R.: On the Complexity of Finding Iso-and other morphisms for Partial k-trees. Discrete Mathematics 108(1), 343–364 (1992)

    Article  MathSciNet  Google Scholar 

  10. McGregor, J.: Backtrack Search Algorithms and the Maximal Common Subgraph Problem. Software Practice and Experience 12(1), 23–34 (1982)

    Article  MATH  Google Scholar 

  11. Levi, G.: A Note on the Derivation of Maximal Common Subgraphs of Two Directed or Undirected Graphs. Calcolo 9(4), 341–352 (1972)

    Article  MathSciNet  Google Scholar 

  12. Koch, I.: Enumerating All Connected Maximal Common Subgraphs in Two Graphs. Theoretical Computer Science 250(1), 1–30 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A Comparison of Algorithms for Maximum Common Subgraph on Randomly Connected Graphs. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SSPR & SPR 2002. LNCS, vol. 2396, pp. 123–132. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Conte, D., Foggia, P., Vento, M.: Challenging Complexity of Maximum Common Subgraph Detection Algorithms: A Performance Analysis of Three Algorithms on a Wide Database of Graphs. Journal of Graph Algorithms and Applications 11(1), 99–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Raymond, J., Willett, P.: Maximum Common Subgraph Isomorphism Algorithms for the Matching of Chemical Structures. Journal of Computer-Aided Molecular Design 16(7), 521–533 (2002)

    Article  Google Scholar 

  16. Bern, M., Eppstein, D.: Mesh Generation And Optimal Triangulation. Computing in Euclidean Geometry 1, 23–90 (1992)

    Article  MathSciNet  Google Scholar 

  17. Lladós, J., Martí, E., Villanueva, J.: Symbol Recognition by Error-Tolerant Subgraph Matching between Region Adjacency Graphs. IEEE Trans. Pattern Analysis and Machine Intelligence 23(10), 1137–1143 (2001)

    Article  Google Scholar 

  18. Konc, J., Janezic, D.: An Improved Branch and Bound Algorithm for the Maximum Clique Problem. Communications in Mathematical and in Computer Chemistry/MATCH 58(3), 569–590 (2007)

    MathSciNet  Google Scholar 

  19. Pelillo, M., Torsello, A.: Payoff-Monotonic Game Dynamics and the Maximum Clique Problem. Neural Computation 18(5), 1215–1258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, Y., Bunke, H., Liu, CL. (2013). An Algorithm for Maximum Common Subgraph of Planar Triangulation Graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics