Abstract
Dendrograms are used in hierarchical classification. They also are useful structures in image processing, for segmentation or filtering purposes. The structure of a hierarchy is univocally expressed by a ultrametric ecart. The hierarchies form a complete lattice on which two adjunctions will be defined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benzécri, J.P.: L’analyse des données 1. La taxinomie, ch. 3, pp. 119–153. Dunod (1973)
Heijmans, H.: Connected morphological operators for binary images. Computer Vision and Image Understanding 73(1), 99–120 (1999)
Matheron, G.: Filters and lattices. In: Serra, J. (ed.) Mathematical Morphology Volume II: theoretical advances. Academic Press, London (1988)
Meyer, F.: An overview of morphological segmentation. International Journal of Pattern Recognition and Artificial Intelligence 17(7), 1089–1118 (2001)
Ronse, C.: Partial partitions, partial connections and connective segmentation. J. Math. Imaging Vis. 32(2), 97–125 (2008)
Ronse, C.: Reconstructing masks from markers in non-distributive lattices. Appl. Algebra Eng. Commun. Comput. 19, 51–85 (2008)
Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. Appl. Algebra Eng., Commun. Comput. 21(5), 343–396 (2010)
Salembier, P., Garrido, L.: Connected operators based on region-tree pruning. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing, vol. 18, pp. 169–178. Springer, US (2002)
Serra, J. (ed.): Image Analysis and Mathematical Morphology. II: Theoretical Advances. Academic Press, London (1988)
Serra, J.: Morphological operators for the segmentation of colour images. In: Bilodeau, M.S.M., Meyer, F. (eds.) Space, structure, and randomness. Contributions in honor of Georges Matheron in the fields of geostatistics, random sets, and mathematical morphology. Lecture Notes in Statistics, vol. 183, pp. 223–255, xviii, 395 p. Springer, New York (2005)
Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24, 83–130 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meyer, F. (2013). Adjunctions on the Lattice of Dendrograms. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-38221-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38220-8
Online ISBN: 978-3-642-38221-5
eBook Packages: Computer ScienceComputer Science (R0)