Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adjunctions on the Lattice of Dendrograms

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7877))

Abstract

Dendrograms are used in hierarchical classification. They also are useful structures in image processing, for segmentation or filtering purposes. The structure of a hierarchy is univocally expressed by a ultrametric ecart. The hierarchies form a complete lattice on which two adjunctions will be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benzécri, J.P.: L’analyse des données 1. La taxinomie, ch. 3, pp. 119–153. Dunod (1973)

    Google Scholar 

  2. Heijmans, H.: Connected morphological operators for binary images. Computer Vision and Image Understanding 73(1), 99–120 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Matheron, G.: Filters and lattices. In: Serra, J. (ed.) Mathematical Morphology Volume II: theoretical advances. Academic Press, London (1988)

    Google Scholar 

  4. Meyer, F.: An overview of morphological segmentation. International Journal of Pattern Recognition and Artificial Intelligence 17(7), 1089–1118 (2001)

    Article  Google Scholar 

  5. Ronse, C.: Partial partitions, partial connections and connective segmentation. J. Math. Imaging Vis. 32(2), 97–125 (2008)

    Article  MathSciNet  Google Scholar 

  6. Ronse, C.: Reconstructing masks from markers in non-distributive lattices. Appl. Algebra Eng. Commun. Comput. 19, 51–85 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. Appl. Algebra Eng., Commun. Comput. 21(5), 343–396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Salembier, P., Garrido, L.: Connected operators based on region-tree pruning. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing, vol. 18, pp. 169–178. Springer, US (2002)

    Google Scholar 

  9. Serra, J. (ed.): Image Analysis and Mathematical Morphology. II: Theoretical Advances. Academic Press, London (1988)

    Google Scholar 

  10. Serra, J.: Morphological operators for the segmentation of colour images. In: Bilodeau, M.S.M., Meyer, F. (eds.) Space, structure, and randomness. Contributions in honor of Georges Matheron in the fields of geostatistics, random sets, and mathematical morphology. Lecture Notes in Statistics, vol. 183, pp. 223–255, xviii, 395 p. Springer, New York (2005)

    Google Scholar 

  11. Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24, 83–130 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer, F. (2013). Adjunctions on the Lattice of Dendrograms. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics