Nothing Special   »   [go: up one dir, main page]

Skip to main content

Proving Properties of Co-logic Programs with Negation by Program Transformations

  • Conference paper
Logic-Based Program Synthesis and Transformation (LOPSTR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7844))

Abstract

A framework for unfold/fold transformation of (constraint) co-logic programs has been proposed recently, which can be used to prove properties of co-logic programs, thereby allowing us to reason about infinite sequences of events such as behavior of reactive systems. The main problem with this approach is that only definite co-logic programs are considered, thus representing a rather narrow class of co-logic programs. In this paper we consider ”negation elimination”, a familiar program transformation method, tailored to co-logic programs; given a program for predicate p(X), negation elimination derives a program which computes its negation ¬p(X), when the program satisfies certain conditions. We show that negation elimination can be used for co-logic programs, and its application is correct under the alternating fixpoint semantics of co-logic programs. We show by examples how negation elimination, when incorporated into the previous framework for unfold/fold transformation, allows us to represent and reason about a wider class of co-logic programs. We also discuss the difference between negation elimination applied to co-logic programs and the conventional negative unfolding applied to stratified programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive Programs. J. ACM 24(1), 144–167 (1977)

    Article  MathSciNet  Google Scholar 

  2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

    Google Scholar 

  3. Colmerauer, A.: Prolog and Infinite Trees. In: Logic Programming, pp. 231–251. Academic Press (1982)

    Google Scholar 

  4. Etalle, S., Gabbrielli, M.: Transformations of CLP Modules. Theor. Comput. Sci., 101–146 (1996)

    Google Scholar 

  5. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic programming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 27–44. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Gupta, G., Saeedloei, N., DeVries, B., Min, R., Marple, K., Kluźniak, F.: Infinite computation, co-induction and computational logic. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 40–54. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Jaffar, J., Stuckey, P.: Semantics of infinite tree logic programming. Theoretical Computer Science 46, 141–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. J. Log. Program. 19/20, 503–581 (1994)

    Article  MathSciNet  Google Scholar 

  9. Kott, L.: Unfold/fold program transformations. In: Algebraic Methods in Semantics, pp. 411–434. Cambridge University Press (1985)

    Google Scholar 

  10. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)

    Google Scholar 

  11. Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. J. Logic Programming 11, 217–242 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Min, R., Gupta, G.: Coinductive Logic Programming with Negation. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 97–112. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Pettorossi, A., Proietti, M.: Transformation of Logic Programs: Foundations and Techniques. J. Logic Programming 19/20, 261–320 (1994)

    Article  MathSciNet  Google Scholar 

  14. Pettorossi, A., Proietti, M.: Perfect Model Checking via Unfold/Fold Transformations. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 613–628. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Pettorossi, A., Proietti, M., Senni, V.: Deciding Full Branching Time Logic by Program Transformation. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 5–21. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Pettorossi, A., Proietti, M., Senni, V.: Transformations of logic programs on infinite lists. Theory and Practice of Logic Programming 10, 383–399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Przymusinski, T.C.: On the Declarative and Procedural Semantics of Logic Programs. J. Automated Reasoning 5(2), 167–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sato, T., Tamaki, H.: Transformational Logic Program Synthesis. In: Proc. FGCS 1984, Tokyo, pp. 195–201 (1984)

    Google Scholar 

  19. Seki, H.: On Inductive and Coinductive Proofs via Unfold/fold Transformations. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 82–96. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Seki, H.: Proving Properties of Co-logic Programs by Unfold/Fold Transformations. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 205–220. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Seki, H.: Unfold/Fold Transformation of Stratified Programs. Theoretical Computer Science 86, 107–139 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Simon, L.E.: Extending Logic Programming with Coinduction, Ph.D. Dissertation, University of Texas at Dallas (2006)

    Google Scholar 

  24. Tamaki, H., Sato, T.: Unfold/Fold Transformation of Logic Programs. In: Proc. 2nd Int. Conf. on Logic Programming, pp. 127–138 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seki, H. (2013). Proving Properties of Co-logic Programs with Negation by Program Transformations. In: Albert, E. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2012. Lecture Notes in Computer Science, vol 7844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38197-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38197-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38196-6

  • Online ISBN: 978-3-642-38197-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics