Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Personalized Model for Galvanic Coupling in Intrabody Communication Systems

  • Conference paper
Wireless Mobile Communication and Healthcare (MobiHealth 2012)

Abstract

Intrabody communication (IBC) uses the human body as a transmission medium for electrical signals, providing an efficient channel to interconnect devices in Body Sensor Networks. For IBC galvanic coupling, the signal path is accomplished through two pairs of electrodes deployed on the skin, which suggest the dependence of the attenuation signal on the subject’s electrophysiological skin properties. With the purpose of gaining an insight into the attenuation differences observed for diverse subjects, a simple transmission line-based model has been used for the identification of those personalized parameters that best emulate the attenuation behavior. Experimental results for two different subjects have been carried out using a harmonized measurement set-up. Model simulations have shown to match measurement data more accurately when individualized instead standard skin parameters were used, thus highlighting the need to deal with personalized models in IBC research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maglaveras, N., Bonato, P., Tamura, T.: Guest Editorial Special Section on Personal Health Systems. IEEE Trans. Inf. Technol. Biomed. 14, 360–363 (2010)

    Article  Google Scholar 

  2. Li, S., Hu, F., Li, G.: Advances and Challenges in Body Area Network. In: Zhang, J. (ed.) ICAIC 2011, Part III. CCIS, vol. 226, pp. 58–65. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Zimmerman, T.G.: Personal area networks: Near-field intrabody communication. IBM Systems Journal 35(3.4), 609–617 (1996)

    Article  Google Scholar 

  4. Song, Y., Qun Hao, Q., Zhang, K., Wang, M., Chu, Y., Kang, B.: The Simulation Method of the Galvanic Coupling Intrabody Communication With Different Signal Transmission Paths. IEEE Trans. Instrum. Meas. 60, 1257–1266 (2011)

    Article  Google Scholar 

  5. Xu, R., Hongjie Zhu, H., Yuan, J.: Electric-Field Intrabody Communication Channel Modeling With Finite-Element Method. IEEE Trans. Biomed. Eng. 58, 705–712 (2011)

    Article  Google Scholar 

  6. Pun, S.H., Gao, Y.M., Mak, P.U., Vai, M.I., Du, M.: Quasi-Static Modeling of Human Limb for Intra-Body Communications With Experiments. IEEE Trans. Inf. Technol. Biomed. 15(6), 870–876 (2011)

    Article  Google Scholar 

  7. Bae, J., Cho, H., Song, K., Lee, H., Yoo, H.-J.: The Signal Transmission Mechanism on the Surface of Human Body for Body Channel Communication. IEEE Trans. Microw. Theory Tech. 60(3), 582–593 (2012)

    Article  Google Scholar 

  8. Lucev, Z., Krois, I., Cifrek, M.: Effect of body positions and movements in a capacitive intrabody communication channel from 100 kHz to 100 MHz. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 2791–2795 (2012)

    Google Scholar 

  9. Callejón, M.A., Naranjo, D., Reina, J., Roa, L.M.: Distributed Circuit Modeling of Galvanic and Capacitive Coupling for Intrabody Communication. IEEE Trans. Biomed. Eng. PP(99), 1 (2012); early access article

    Google Scholar 

  10. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology 41, 2271 (1996)

    Article  Google Scholar 

  11. Callejón, M.A., Roa, L.M., Reina, J., Naranjo, D.: Study of Attenuation and Dispersion through the Skin in Intra-Body Communications Systems. IEEE Trans. Inf. Technol. Biomed. 16(1), 159–165 (2012)

    Article  Google Scholar 

  12. Callejón, M.A., Naranjo, D., Reina-Tosina, L.J., Roa, L.M.: A First Approach to the Harmonization of Intrabody Communications Measurements. In: Long, M. (ed.) World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012 Beijing, IFMBE Proceedings, vol. 39, pp. 704–707. Springer, Heidelberg (2013)

    Google Scholar 

  13. Grimnes, S., Martinsen, Ø.G.: Bioimpedance and bioelectricity basics, pp. 105–109. Ed. Academic Press (2000)

    Google Scholar 

  14. Hachisuka, K., Takeda, T., Terauchi, Y., Sasaki, K., Hosaka, H., Itao, K.: Intra-body data transmission for the personal area network. Microsystem Technologies 11, 1020–1027 (2005)

    Article  Google Scholar 

  15. Cho, N., Yoo, J., Song, S.-J., Lee, J., Jeon, S., Yoo, H.-J.: The Human Body Characteristics as a Signal Transmission Medium for Intrabody Communication. IEEE Trans. Microw. Theory Tech. 55, 1080–1086 (2007)

    Article  Google Scholar 

  16. Koutitas, G.: Multiple Human Effects in Body Area Networks. IEEE Antennas Wireless Propag. Lett. 9(5), 1080–1086 (2007)

    Google Scholar 

  17. Xu, R., Ng, W., Zhu, H., Shan, H., Yuan, J.: Environment Coupling and Interference on the Electric-Field Intrabody Communication Channel. IEEE Trans. Biomed. Eng. 59(7), 2051–2059 (2012)

    Article  Google Scholar 

  18. International Commission on Non-Ionizing Radiation Protection: Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz). Health Physics 74(4), 494–522 (1998)

    Google Scholar 

  19. Tronstad, C., Johnsen, G.K., Grimnes, S., Martinsen, Ø.G.: A study on electrode gels for skin conductance measurements. Physiol. Meas. 31, 1395 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Callejón, M.A., Naranjo, D., Reina-Tosina, J., Roa, L.M. (2013). A Personalized Model for Galvanic Coupling in Intrabody Communication Systems. In: Godara, B., Nikita, K.S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37893-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37893-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37892-8

  • Online ISBN: 978-3-642-37893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics