Nothing Special   »   [go: up one dir, main page]

Skip to main content

Segmentation of Retinal Blood Vessels Using Gaussian Mixture Models and Expectation Maximisation

  • Conference paper
Health Information Science (HIS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7798))

Included in the following conference series:

Abstract

In this paper, we present an automated method to segment blood vessels in fundus retinal images. The method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. Our method combines the bias correction to correct the intensity inhomogeneity of the retinal image, and a matched filter to enhance the appearance of the blood vessels. The blood vessels are then extracted from the matched filter response image using the Expectation Maximisation algorithm. The method is tested on fundus retinal images of STARE dataset and the experimental results are compared with some recently published methods of retinal blood vessels segmentation. The experimental results show that our method achieved the best overall performance and it is comparable to the performance of human experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fritzsche, K., Can, A., Shen, H., Tsai, C., Turner, J., Stewart, C., Roysam, B.: Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images (2003)

    Google Scholar 

  2. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging 19(3), 203–210 (2002)

    Article  Google Scholar 

  3. Mendonça, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25, 1200–1213 (2006)

    Article  Google Scholar 

  4. Xu, L., Luo, S.: A novel method for blood vessel detection from retinal images. BioMedical Engineering OnLine 9(1), 1–10 (2010)

    Article  Google Scholar 

  5. Salazar-Gonzalez, A., Li, Y., Kaba, D.: Mrf reconstruction of retinal images for the optic disc segmentation (2012)

    Google Scholar 

  6. Tustison, N., Avants, B., Cook, P., Zheng, Y., Egan, A., Yushkevich, P., Gee, J.: N4itk: Improved n3 bias correction. IEEE Transactions on Medical Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  7. Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Transactions on Medical Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  8. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging 8(3), 263–269 (1989)

    Article  Google Scholar 

  9. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1–38 (1977)

    Google Scholar 

  10. Clarke, L., Velthuizen, R., Camacho, M., Heine, J., Vaidyanathan, M., Hall, L., Thatcher, R., Silbiger, M.: Mri segmentation: Methods and applications. Magnetic Resonance Imaging 13(3), 343–368 (1995)

    Article  Google Scholar 

  11. Pyun, K., Lim, J., Won, C., Gray, R.: Image segmentation using hidden markov gauss mixture models. IEEE Transactions on Image Processing 16(7), 1902–1911 (2007)

    Article  MathSciNet  Google Scholar 

  12. Chanwimaluang, T., Fan, G.: An efficient blood vessel detection algorithm for retinal images using local entropy thresholding. In: Proceedings of the 2003 International Symposium on Circuits and Systems, ISCAS 2003, vol. 5, pp. V–21. IEEE, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaba, D., Salazar-Gonzalez, A.G., Li, Y., Liu, X., Serag, A. (2013). Segmentation of Retinal Blood Vessels Using Gaussian Mixture Models and Expectation Maximisation. In: Huang, G., Liu, X., He, J., Klawonn, F., Yao, G. (eds) Health Information Science. HIS 2013. Lecture Notes in Computer Science, vol 7798. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37899-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37899-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37898-0

  • Online ISBN: 978-3-642-37899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics