Nothing Special   »   [go: up one dir, main page]

Skip to main content

Swarm Intelligence Techniques Applied to Nonlinear Systems State Estimation

  • Chapter
Advances in Heuristic Signal Processing and Applications

Abstract

In this chapter, a new class of filters based on swarm intelligence is introduced for nonlinear systems state estimation. As a subset of heuristic filters, swarm filters formulate a nonlinear system state estimation problem as a stochastic dynamic optimization problem and utilize swarm intelligence techniques such as particle swarm optimization and ant colony optimization to find and track the best estimate. As a subset of nonlinear filters, swarm filters can successfully compete with well-known nonlinear filters such as unscented Kalman filter, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    CACF code is available at http://ae.sharif.ir/Faculty-Resume/Nobahari.php.

References

  1. Siouris, G.M.: An Engineering Approach to Optimal Control and Estimation Theory. Air Force Institute of Technology, New York (1995)

    Google Scholar 

  2. Brayson, A.E., Ho, Y.C.: Applied Optimal Control. Blaisdell Publishing Company, Waltham (1969)

    Google Scholar 

  3. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Blaisdell Publishing Company, Artech House, London (2004)

    Google Scholar 

  4. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  Google Scholar 

  5. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  6. Julier, S.J., Uhlmann, J.K.: A new extension of the Kalman filter to nonlinear systems. In: AeroSense 11th International Symposium Aerospace Defense Sensing, Simulation and Controls, pp. 182–193 (1960)

    Google Scholar 

  7. Carpentier, J., Clifford, P., Fernhead, P.: An improved particle filter for non-linear problems. IEE Proc. Radar Sonar Navig. 146(1), 2–7 (1999)

    Article  Google Scholar 

  8. Nobahari, H., Sharifi, A.: A novel heuristic filter based on ant colony optimization for non-linear systems state estimation. In: Computational Intelligence and Intelligent Systems, 6th International Symposium, CCIS, Wuhan, China, vol. 316, pp. 20–29 (2012)

    Chapter  Google Scholar 

  9. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. J. Stat. Comput. Simul. 50(1), 1–23 (1997)

    Google Scholar 

  10. Higuchi, T.: Monte Carlo filter using the genetic algorithm operators. J. Stat. Comput. Simul. 59(1), 1–23 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Park, S., Hwang, J.P., Kim, E., Kang, H.: A new evolutionary particle filter for the prevention of sample impoverishment. IEEE Trans. Evol. Comput. 13(4), 801–809 (2009)

    Article  Google Scholar 

  12. Clapp, T.: Statistical Methods for the Processing of Communication Data. University of Cambridge, Cambridge (2000)

    Google Scholar 

  13. Troma, P., Szepesvári, C.: LS-N-IPS: an improvement of particle filters by means of local search. In: Proc. Non-Linear Control Systems (NOLCOS 2001), St. Petersburg, Russia (2001)

    Google Scholar 

  14. Tong, G., Fang, Z., Xu, X.: A particle swarm optimized particle filter for nonlinear system state estimation. In: IEEE Congress on Evolutionary Computation, pp. 438–442 (2006)

    Google Scholar 

  15. Zhong, J.P., Fung, Y.F., Dai, M.: A biologically inspired improvement strategy for particle filter: ant colony optimization assisted particle filter. Int. J. Control. Autom. Syst. 8(3), 519–526 (2010)

    Article  Google Scholar 

  16. Hao, Z., Zhang, X., Yu, P., Li, H.: Video object tracing based on particle filter with ant colony optimization. In: 2nd IEEE International Conference, Advance Computer Control, Automation and Systems, vol. 3, pp. 232–236 (2010)

    Google Scholar 

  17. Yu, Y., Zheng, X.: Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution. J. Signal Process. 91, 1339–1342 (2011)

    Article  MATH  Google Scholar 

  18. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)

    Article  Google Scholar 

  19. Cappe, O., Godsill, S.J., Moulines, E.: An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE 95(5), 899–924 (2007)

    Article  Google Scholar 

  20. Doucet, A., Godsill, S.J., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. J. Stat. Comput. 10, 197–208 (2000)

    Article  Google Scholar 

  21. Kong, A., Liu, J.S., Wong, W.H.: Sequential imputations and Bayesian missing data problems. J. Am. Stat. Assoc. 89(425), 278–288 (1994)

    Article  MATH  Google Scholar 

  22. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc., F, Radar Signal Process. 140(2), 107–113 (1993)

    Article  Google Scholar 

  23. McGinnity, S., Irwin, G.W.: Multiple model bootstrap filter for maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. 36(3), 1006–1012 (2000)

    Article  Google Scholar 

  24. Pitt, M., Shephard, N.: Auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–599 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zang, W., Shi, Z.G., Du, S.C., Chen, K.S.: Novel roughening method for reentry vehicle tracking using particle filter. J. Electromagn. Waves Appl. 21(14), 1969–1981 (2007)

    Article  Google Scholar 

  26. Bruno, M.G.S., Pavlov, A.: Improved particle filters for ballistic target tracking. In: Proc. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2(14), pp. 705–708 (2004)

    Google Scholar 

  27. Doucet, A., Freitas, D., Gordon, N.J.: Sequential Monte Carlo Methods in Practice. Springer Series in Statistics for Engineering and Information Science. Springer, New York (2001)

    Book  MATH  Google Scholar 

  28. van der Merwe, R., de Freitas, N., Doucet, A., Wan, E.: The unscented particle filter. In: Dietterich, T.G., Leen, T.K., Tresp, V. (eds.) Advances in Neural Information Processing Systems. NIPS13, vol. 13, pp. 548–590 (2001)

    Google Scholar 

  29. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, Piscataway, NJ, Perth, Australia, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  30. Pourtakdoust, S.H., Nobahari, H.: An extension of ant colony system to continuous optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stutzle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301. Springer, Heidelberg (2004)

    Google Scholar 

  31. Socha, K.: ACO for continuous and mixed-variable. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stutzle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)

    Google Scholar 

  32. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Nobahari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nobahari, H., Sharifi, A., MohammadKarimi, H. (2013). Swarm Intelligence Techniques Applied to Nonlinear Systems State Estimation. In: Chatterjee, A., Nobahari, H., Siarry, P. (eds) Advances in Heuristic Signal Processing and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37880-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37880-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37879-9

  • Online ISBN: 978-3-642-37880-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics