Abstract
In this chapter, a new class of filters based on swarm intelligence is introduced for nonlinear systems state estimation. As a subset of heuristic filters, swarm filters formulate a nonlinear system state estimation problem as a stochastic dynamic optimization problem and utilize swarm intelligence techniques such as particle swarm optimization and ant colony optimization to find and track the best estimate. As a subset of nonlinear filters, swarm filters can successfully compete with well-known nonlinear filters such as unscented Kalman filter, etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
CACF code is available at http://ae.sharif.ir/Faculty-Resume/Nobahari.php.
References
Siouris, G.M.: An Engineering Approach to Optimal Control and Estimation Theory. Air Force Institute of Technology, New York (1995)
Brayson, A.E., Ho, Y.C.: Applied Optimal Control. Blaisdell Publishing Company, Waltham (1969)
Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Blaisdell Publishing Company, Artech House, London (2004)
Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)
Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)
Julier, S.J., Uhlmann, J.K.: A new extension of the Kalman filter to nonlinear systems. In: AeroSense 11th International Symposium Aerospace Defense Sensing, Simulation and Controls, pp. 182–193 (1960)
Carpentier, J., Clifford, P., Fernhead, P.: An improved particle filter for non-linear problems. IEE Proc. Radar Sonar Navig. 146(1), 2–7 (1999)
Nobahari, H., Sharifi, A.: A novel heuristic filter based on ant colony optimization for non-linear systems state estimation. In: Computational Intelligence and Intelligent Systems, 6th International Symposium, CCIS, Wuhan, China, vol. 316, pp. 20–29 (2012)
Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. J. Stat. Comput. Simul. 50(1), 1–23 (1997)
Higuchi, T.: Monte Carlo filter using the genetic algorithm operators. J. Stat. Comput. Simul. 59(1), 1–23 (1997)
Park, S., Hwang, J.P., Kim, E., Kang, H.: A new evolutionary particle filter for the prevention of sample impoverishment. IEEE Trans. Evol. Comput. 13(4), 801–809 (2009)
Clapp, T.: Statistical Methods for the Processing of Communication Data. University of Cambridge, Cambridge (2000)
Troma, P., Szepesvári, C.: LS-N-IPS: an improvement of particle filters by means of local search. In: Proc. Non-Linear Control Systems (NOLCOS 2001), St. Petersburg, Russia (2001)
Tong, G., Fang, Z., Xu, X.: A particle swarm optimized particle filter for nonlinear system state estimation. In: IEEE Congress on Evolutionary Computation, pp. 438–442 (2006)
Zhong, J.P., Fung, Y.F., Dai, M.: A biologically inspired improvement strategy for particle filter: ant colony optimization assisted particle filter. Int. J. Control. Autom. Syst. 8(3), 519–526 (2010)
Hao, Z., Zhang, X., Yu, P., Li, H.: Video object tracing based on particle filter with ant colony optimization. In: 2nd IEEE International Conference, Advance Computer Control, Automation and Systems, vol. 3, pp. 232–236 (2010)
Yu, Y., Zheng, X.: Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution. J. Signal Process. 91, 1339–1342 (2011)
Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)
Cappe, O., Godsill, S.J., Moulines, E.: An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE 95(5), 899–924 (2007)
Doucet, A., Godsill, S.J., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. J. Stat. Comput. 10, 197–208 (2000)
Kong, A., Liu, J.S., Wong, W.H.: Sequential imputations and Bayesian missing data problems. J. Am. Stat. Assoc. 89(425), 278–288 (1994)
Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc., F, Radar Signal Process. 140(2), 107–113 (1993)
McGinnity, S., Irwin, G.W.: Multiple model bootstrap filter for maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. 36(3), 1006–1012 (2000)
Pitt, M., Shephard, N.: Auxiliary particle filters. J. Am. Stat. Assoc. 94(446), 590–599 (1999)
Zang, W., Shi, Z.G., Du, S.C., Chen, K.S.: Novel roughening method for reentry vehicle tracking using particle filter. J. Electromagn. Waves Appl. 21(14), 1969–1981 (2007)
Bruno, M.G.S., Pavlov, A.: Improved particle filters for ballistic target tracking. In: Proc. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2(14), pp. 705–708 (2004)
Doucet, A., Freitas, D., Gordon, N.J.: Sequential Monte Carlo Methods in Practice. Springer Series in Statistics for Engineering and Information Science. Springer, New York (2001)
van der Merwe, R., de Freitas, N., Doucet, A., Wan, E.: The unscented particle filter. In: Dietterich, T.G., Leen, T.K., Tresp, V. (eds.) Advances in Neural Information Processing Systems. NIPS13, vol. 13, pp. 548–590 (2001)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, Piscataway, NJ, Perth, Australia, vol. 4, pp. 1942–1948 (1995)
Pourtakdoust, S.H., Nobahari, H.: An extension of ant colony system to continuous optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stutzle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301. Springer, Heidelberg (2004)
Socha, K.: ACO for continuous and mixed-variable. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stutzle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)
Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Nobahari, H., Sharifi, A., MohammadKarimi, H. (2013). Swarm Intelligence Techniques Applied to Nonlinear Systems State Estimation. In: Chatterjee, A., Nobahari, H., Siarry, P. (eds) Advances in Heuristic Signal Processing and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37880-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-37880-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37879-9
Online ISBN: 978-3-642-37880-5
eBook Packages: Computer ScienceComputer Science (R0)