Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimal Joint Selection for Skeletal Data from RGB-D Devices Using a Genetic Algorithm

  • Conference paper
Advances in Computational Intelligence (MICAI 2012)

Abstract

The growth in interest in RGB-D devices (e.g. Microsoft Kinect or ASUS Xtion Pro) is based on their low price, as well as the wide range of possible applications. These devices can provide skeletal data consisting of 3D position, as well as orientation data, which can be further used for pose or action recognition. Data for 15 or 20 joints can be retrieved, depending on the libraries used. Recently, many datasets have been made available which allow the comparison of different action recognition approaches for diverse applications (e.g. gaming, Ambient-Assisted Living, etc.). In this work, a genetic algorithm is used to determine the contribution of each of the skeleton’s joints to the accuracy of an action recognition algorithm, thus using or ignoring the data from each joint depending on its relevance. The proposed method has been validated using a k-means-based action recognition approach and using the MSR-Action3D dataset for test. Results show the presented algorithm is able to improve the recognition rates while reducing the feature size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Johansson, G.: Visual perception of biological motion and a model for its analysis. Attention, Perception, & Psychophysics 14, 201–211 (1973), doi:10.3758/BF03212378

    Article  Google Scholar 

  2. Polana, R., Nelson, A.: Detection and recognition of periodic, nonrigid motion. International Journal of Computer Vision 23, 261–282 (1997)

    Article  Google Scholar 

  3. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–14 (June 2010)

    Google Scholar 

  4. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining Actionlet Ensemble for Action Recognition with Depth Cameras. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012), Providence, Rhode Island (June 2012)

    Google Scholar 

  5. Sung, J., Ponce, C., Selman, B., Saxena, A.: Human activity detection from RGBD images. In: AAAI Workshop on Pattern, Activity and Intent Recognition, PAIR (2011)

    Google Scholar 

  6. Ni, B., Wang, G., Moulin, P.: RGBD-HuDaAct: A color-depth video database for human daily activity recognition. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1147–1153 (November 2011)

    Google Scholar 

  7. Janoch, A., Karayev, S., Jia, Y., Barron, J.T., Fritz, M., Saenko, K., Darrell, T.: A category-level 3-d object dataset: Putting the kinect to work. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1168–1174 (November 2011)

    Google Scholar 

  8. Cantú-Paz, E.: Feature Subset Selection, Class Separability, and Genetic Algorithms. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 959–970. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Lanzi, P.: Fast feature selection with genetic algorithms: a filter approach. In: IEEE International Conference on Evolutionary Computation, pp. 537–540 (April 1997)

    Google Scholar 

  10. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI 1992, pp. 129–134. AAAI Press (1992)

    Google Scholar 

  11. Casado Yusta, S.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recognition Letters 30(5), 525–534 (2009)

    Article  Google Scholar 

  12. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intelligent Systems and their Applications 13(2), 44–49 (1998)

    Article  Google Scholar 

  13. Raptis, M., Kirovski, D., Hoppe, H.: Real-Time Classification of Dance Gestures from Skeleton Animation. In: Proceedings of the 10th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2011, pp. 147–156 (2011)

    Google Scholar 

  14. John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proceedings of the 11th International Conference on Machine Learning, pp. 121–129. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  15. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Boston (1998)

    Book  MATH  Google Scholar 

  16. Cheema, S., Eweiwi, A., Thurau, C., Bauckhage, C.: Action recognition by learning discriminative key poses. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1302–1309 (November 2011)

    Google Scholar 

  17. Chaaraoui, A.A., Climent-Pérez, P., Flórez-Revuelta, F.: An Efficient Approach for Multi-view Human Action Recognition Based on Bag-of-Key-Poses. In: Salah, A.A., Ruiz-del-Solar, J., Meriçli, Ç., Oudeyer, P.-Y. (eds.) HBU 2012. LNCS, vol. 7559, pp. 29–40. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Yang, X., Tian, Y.: EigenJoints-based Action Recognition Using Naïve-Bayes-Nearest-Neighbor. In: Second International Workshop on Human Activity Understanding from 3D Data in Conjunction with CVPR, 2012, Providence, Rhode Island (2012)

    Google Scholar 

  19. Punch, W., Goodman, E., Pei, M., Chia-Shun, L., Hovland, P., Enbody, R.: Further research on feature selection and classification using genetic algorithms. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 557–564 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Climent-Pérez, P., Chaaraoui, A.A., Padilla-López, J.R., Flórez-Revuelta, F. (2013). Optimal Joint Selection for Skeletal Data from RGB-D Devices Using a Genetic Algorithm. In: Batyrshin, I., Mendoza, M.G. (eds) Advances in Computational Intelligence. MICAI 2012. Lecture Notes in Computer Science(), vol 7630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37798-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37798-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37797-6

  • Online ISBN: 978-3-642-37798-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics