Nothing Special   »   [go: up one dir, main page]

Skip to main content

From Search to Computation: Redundancy Criteria and Simplification at Work

  • Chapter
Programming Logics

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7797))

Abstract

The concept of redundancy and simplification has been an ongoing theme in Harald Ganzinger’s work from his first contributions to equational completion to the various variants of the superposition calculus. When executed by a theorem prover, the inference rules of logic calculi usually generate a tremendously huge search space. The redundancy and simplification concept is indispensable for cutting down this search space to a manageable size. For a number of subclasses of first-order logic appropriate redundancy and simplification concepts even turn the superposition calculus into a decision procedure. Hence, the key to successfully applying first-order theorem proving to a problem domain is to find those simplifications and redundancy criteria that fit this domain and can be effectively implemented.

We present Harald Ganzinger’s work in the light of the simplification and redundancy techniques that have been developed for concrete problem areas. This includes a variant of contextual rewriting to decide a subclass of Euclidean geometry, ordered chaining techniques for Church-Rosser and priority queue proofs, contextual rewriting and history- dependent complexities for the completion of conditional rewrite systems, rewriting with equivalences for theorem proving in set theory, soft typing for the exploration of sort information in the context of equations, and constraint inheritance for automated complexity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afshordel, B., Hillenbrand, T., Weidenbach, C.: First-Order Atom Definitions Extended. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 309–319. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, New York (1998)

    Book  MATH  Google Scholar 

  3. Bachmair, L.: Canonical Equational Proofs. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  4. Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: [First Annual] Symposium on Logic in Computer Science, June 16–18, pp. 346–357. IEEE Computer Society Press, Cambridge (1986)

    Google Scholar 

  5. Bachmair, L., Ganzinger, H.: Completion of First-Order Clauses with Equality by Strict Superposition (extended abstract). In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 162–180. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  6. Bachmair, L., Ganzinger, H.: On Restrictions of Ordered Paramodulation with Simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 427–441. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  7. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive relations. Journal of the ACM 45(6), 1007–1049 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, ch. 2, pp. 19–99. Elsevier (2001)

    Google Scholar 

  10. Balbiani, P.: Equation Solving in Geometrical Theories. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  11. Balbiani, P.: Mécanisation de la géométrie: incidence et orthogonalité. Revue d’Intelligence Artificielle 11, 179–211 (1997)

    Google Scholar 

  12. Basin, D., Ganzinger, H.: Automated complexity analysis based on ordered resolution. Journal of the ACM 48(1), 70–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertling, H., Ganzinger, H., Schäfers, R.: CEC: A System for the Completion of Conditional Equational Specifications. In: Ganzinger, H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 378–379. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  14. Brinker, C.: Geometrisches Schließen mit SPASS. Diplomarbeit, Universität des Saarlandes and Max-Planck-Institut für Informatik, Saarbrücken, Germany (2000); Supervisors: Ganzinger, H., Weidenbach, C.

    Google Scholar 

  15. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church–Rosser theorem. Indagationes Mathematicae 34(5), 381–392 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Church, A.: An unsolvable problem of elementary number theory. American Journal of Mathematics 58, 345–363 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  17. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. Journal of the ACM 27(4), 758–771 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fay, M.: First-order unification in an equational theory. In: Fourth Workshop on Automated Deduction, pp. 161–167. Academic Press, Austin (1979)

    Google Scholar 

  19. Finkler, U., Mehlhorn, K.: Checking priority queues. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999). Society for Industrial and Applied Mathematics, pp. 901–902 (1999)

    Google Scholar 

  20. Ganzinger, H.: A Completion Procedure for Conditional Equations. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 62–83. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  21. Ganzinger, H.: Completion with History-Dependent Complexities for Generated Equations. In: Sannella, D., Tarlecki, A. (eds.) Abstract Data Types 1987. LNCS, vol. 332, pp. 73–91. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  22. Ganzinger, H.: Ground Term Confluence in Parametric Conditional Equational Specifications. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds.) STACS 1987. LNCS, vol. 247, pp. 286–298. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  23. Ganzinger, H.: A completion procedure for conditional equations. Journal of Symbolic Computation 11, 51–81 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ganzinger, H.: Order-sorted completion: the many-sorted way. Theoretical Computer Science 89, 3–32 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ganzinger, H., Meyer, C., Weidenbach, C.: Soft Typing for Ordered Resolution. In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 321–335. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  26. Ganzinger, H., Nieuwenhuis, R., Nivela, P.: The Saturate system (1994), http://www.mpi-sb.mpg.de/SATURATE

  27. Ganzinger, H., Schäfers, R.: System support for modular order-sorted horn clause specifications. In: 12th International Conference on Software Engineering, pp. 150–159. IEEE Computer Society Press, Nice (1990)

    Google Scholar 

  28. Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. Information and Computation 199, 3–23 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Giegerich, R.: Specification and correctness of code generators – an experiment with the CEC-system. In: Müller, J., Ganzinger, H. (eds.) 1st German Workshop “Term Rewriting: Theory and Applications”, SEKI-Report 89/02. Universität Kaiserslautern (1989)

    Google Scholar 

  30. Gnaedig, I., Kirchner, C., Kirchner, H.: Equational completion in order-sorted algebras. Theoretical Computer Science 72(2&3), 169–202 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem-proving strategies: The transfinite semantic tree method. Journal of the ACM 38(3), 559–587 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jacquemard, F., Meyer, C., Weidenbach, C.: Unification in Extensions of Shallow Equational Theories. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 76–90. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  33. Kleene, S.: A theory of positive integers in formal logic. American Journal of Mathematics 57, 153–173, 219–244 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  34. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970); Reprinted in Siekmann and Wrightson [50], pp. 342–376

    Google Scholar 

  35. McAllester, D.A.: Automatic recognition of tractability in inference relation. Journal of the ACM 40(2), 284–303 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nieuwenhuis, R.: First-order completion techniques. Technical report, UPC-LSI, Cited in Nieuwenhuis and Rubio [38] (1991)

    Google Scholar 

  37. Nieuwenhuis, R.: Basic paramodulation and decidable theories (extended abstract). In: Proceedings 11th IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 473–482. IEEE Computer Society Press (1996)

    Google Scholar 

  38. Nieuwenhuis, R., Rubio, A.: Basic Superposition is Complete. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS, vol. 582, Springer, Heidelberg (1992)

    Google Scholar 

  39. Nipkow, T.: More Church–Rosser proofs (in Isabelle/HOL). Journal of Automated Reasoning 26, 51–66 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  41. Nivela, P., Nieuwenhuis, R.: Saturation of First-Order (constrained) Clauses with the Saturate System. In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 436–440. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  42. de Nivelle, H., Piskac, R.: Verification of an off-line checker for priority queues. In: Aichernig, B.K., Beckert, B. (eds.) Third IEEE International Conference on Software Engineering and Formal Methods (SEFM 2005), pp. 210–219. IEEE, Koblenz (2005)

    Chapter  Google Scholar 

  43. Ohlbach, H.J.: Translation methods for non-classical logics – an overview. Bulletin of the IGPL 1(1), 69–90 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Peterson, G.E.: A technique for establishing completeness results in theorem proving with equality. SIAM Journal on Computing 12(1), 82–100 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  45. Piskac, R.: Formal correctness of result checking for priority queues. Master’s thesis, Universität des Saarlandes (February 2005)

    Google Scholar 

  46. Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Communications 15(2-3), 91–110 (2002)

    MATH  Google Scholar 

  47. Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories with equality. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, ch. 8, pp. 298–313. Edinburgh University Press, Edinburgh (1969); Reprinted in Siekmann and Wrightson [50], pp. 298–313

    Google Scholar 

  48. Rusinowitch, M.: Theorem-proving with resolution and superposition. Journal of Symbolic Computation 11(1&2), 21–49 (January/February 1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3), 111–126 (2002)

    MATH  Google Scholar 

  50. Siekmann, J., Wrightson, G.: Automation of Reasoning: Classical Papers on Computational Logic 1967-1970, vol. 2. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  51. Takahashi, M.: Parallel reductions in λ-calculus. Information and Computation 118(1), 120–127 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. Journal of the ACM 44(6), 826–849 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  54. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS Version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–277. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  55. Weidenbach, C., Gaede, B., Rock, G.: SPASS & FLOTTER, version 0.42. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104, pp. 141–145. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  56. Zhang, H., Kapur, D.: First-Order Theorem Proving using Conditional Rewrite Rules. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 1–20. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hillenbrand, T., Piskac, R., Waldmann, U., Weidenbach, C. (2013). From Search to Computation: Redundancy Criteria and Simplification at Work. In: Voronkov, A., Weidenbach, C. (eds) Programming Logics. Lecture Notes in Computer Science, vol 7797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37651-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37651-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37650-4

  • Online ISBN: 978-3-642-37651-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics