Nothing Special   »   [go: up one dir, main page]

Skip to main content

Differentially Private Set-Valued Data Release against Incremental Updates

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7825))

Included in the following conference series:

Abstract

Publication of the private set-valued data will provide enormous opportunities for counting queries and various data mining tasks. Compared to those previous methods based on partition-based privacy models (e.g., k-anonymity), differential privacy provides strong privacy guarantees against adversaries with arbitrary background knowledge. However, the existing solutions based on differential privacy for data publication are currently limited to static datasets, and do not adequately address today’s demand for up-to-date information. In this paper, we address the problem of differentially private set-valued data release on an incremental scenario in which the data need to be transformed are not static. Motivated by this, we propose an efficient algorithm, called IncTDPart, to incrementally generate a series of differentially private releases. The proposed algorithm is based on top-down partitioning model with the help of item-free taxonomy tree and update-bounded mechanism. Extensive experiments on real datasets confirm that our approach maintains high utility and scalability for counting query.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-valued data. In: Proceedings of the VLDB Endowment (PVLDB 2008), vol. 1(1), pp. 115–125 (2008)

    Google Scholar 

  2. He, Y., Naughton, J.F.: Anonymization of Set-Valued Data via Top-Down, Local Generalization. In: Proceedings of the VLDB Endowment (PVLDB 2009), vol. 2(1), pp. 934–945 (2009)

    Google Scholar 

  3. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary information in data privacy. In: Proc. of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2008), pp. 265–273 (2008)

    Google Scholar 

  4. Wong, R.C.W., Fu, A., Wang, K., Yu, P.S., Pei, J.: Can the utility of anonymized data be used for privacy breaches. ACM Transaction on Knowledge Discovery from Data (TKDD 2011) 5(3), 16 (2011)

    Google Scholar 

  5. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proc. of the 31th International Conference on Management of Data (SIGMOD 2011), pp. 193–204 (2011)

    Google Scholar 

  7. Chen, R., Mohammed, N., Fung, B.C.M., Desai, B.C., Xiong, L.: Publishing Set-Valued Data via Differential Privacy. In: PVLDB 2011, vol. 4(11), pp. 1087–1098 (2011)

    Google Scholar 

  8. Chen, R., Fung, B.C.M., Desai, B.C., Sossou, N.M.: Differentially private transit data publication: a case study on the montreal transportation system. In: Proc. of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2012), pp. 213–221 (2012)

    Google Scholar 

  9. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential pirvacy under continual observation. In: Proc. of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pp. 715–724 (2010)

    Google Scholar 

  10. Chan, T.-H.H., Shi, E., Song, D.: Private and continual release of statistics. ACM Transactions on Information and System Security (TISS 2011) 14(3), 26 (2011)

    Google Scholar 

  11. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G.: Differentially private histogram publication. In: Proc. of the 28th International Conference on Data Engineering (ICDE 2012), pp. 32–43 (2012)

    Google Scholar 

  13. Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accuracy of differentially private histogram through consistency. In: Proceedings of the VLDB Endowment (PVLDB 2010), vol. 3(1), pp. 1021–1032 (2010)

    Google Scholar 

  14. Götz, M., Machanavajjhala, A., Wang, G., Xiao, X., Gehrke, J.: Publishing search logs - a comparative study of privacy guarantees. IEEE Transaction Knowledge and Data Engineering (TKDE 2012) 24(3), 520–532 (2012)

    Article  Google Scholar 

  15. McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the netflix prize contenders. In: Proc. of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009), pp. 627–636 (2009)

    Google Scholar 

  16. Byun, J.-W., Sohn, Y., Bertino, E., Li, N.: Secure anonymization for incremental datasets. In: Jonker, W., Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 48–63. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Xiao, X., Tao, Y.: m-invariance: Towards privacy preserving republication of dynamic datasets. In: Proc. of the 27th International Conference on Management of Data (SIGMOD 2007), pp. 689–700 (2007)

    Google Scholar 

  18. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proc. of the 29th International Conference on Management of Data (SIGMOD 2009), pp. 19–30 (2009)

    Google Scholar 

  19. Xiao, X., Bender, G., Hay, M., Gehrke, J.: iReduct: differential privacy with reduced relative errors. In: Proc. of the 31th International Conference on Management of Data (SIGMOD 2011), pp. 229–240 (2011)

    Google Scholar 

  20. Gormode, G., Procopiuc, M., Srivastava, D.: Differentially private summaries for sparse data. In: Proc. of the 15th International Conference on Database Theory (ICDT 2012), pp. 299–311 (2012)

    Google Scholar 

  21. UCI machine learning repository, http://archive.ics.uci.edu/ml

  22. Frequent itemset mining dataset repository, http://fimi.ua.ac.be/data/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Meng, X., Chen, R. (2013). Differentially Private Set-Valued Data Release against Incremental Updates. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds) Database Systems for Advanced Applications. DASFAA 2013. Lecture Notes in Computer Science, vol 7825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37487-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37487-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37486-9

  • Online ISBN: 978-3-642-37487-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics