Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Picture Is Worth a Thousand Tags: Automatic Web Based Image Tag Expansion

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

  • 3944 Accesses

Abstract

We present an approach to automatically expand the annotation of images using the internet as an additional information source. The novelty of the work is in the expansion of image tags by automatically introducing new unseen complex linguistic labels which are collected unsupervised from associated webpages. Taking a small subset of existing image tags, a web based search retrieves additional textual information. Both a textual bag of words model and a visual bag of words model are combined and symbolised for data mining. Association rule mining is then used to identify rules which relate words to visual contents. Unseen images that fit these rules are re-tagged. This approach allows a large number of additional annotations to be added to unseen images, on average 12.8 new tags per image, with an 87.2% true positive rate. Results are shown on two datasets including a new 2800 image annotation dataset of landmarks, the results include pictures of buildings being tagged with the architect, the year of construction and even events that have taken place there. This widens the tag annotation impact and their use in retrieval. This dataset is made available along with tags and the 1970 webpages and additional images which form the information corpus. In addition, results for a common state-of-the-art dataset MIRFlickr25000 are presented for comparison of the learning framework against previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tsai, D., Jing, Y., Liu, Y., Rowley, H., Ioffe, S.M., Rehg, J.: Large-scale image annotation using visual synset. In: Proc. of IEEE International Conference on Computer Vision, ICCV 2011 (2011)

    Google Scholar 

  2. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Grubinger, M., Clough, P., Müller, H., Deselaers, T.: The iapr tc-12 benchmark - a new evaluation resource for visual information systems. In: Proc. of ICLRE (2006)

    Google Scholar 

  4. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition, CVPR 2009 (2009)

    Google Scholar 

  5. Weston, J., Bengio, S., Usunier, N.: Large scale image annotation: learning to rank with joint word-image embeddings. Mach. Learn. 81, 21–35 (2010)

    Article  Google Scholar 

  6. Barnard, K., Duygulu, P., Forsyth, D., De Freitas, N., Blei, D.M., Jaz, K., Hofmann, T., Poggio, T., Shawe-taylor, J.: Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)

    MATH  Google Scholar 

  7. Yakhnenko, O., Honavar, V.: Annotating images and image objects using a hierarchical dirichlet process model. In: Proceedings of the 9th International Workshop on Multimedia Data Mining, MDM 2008: held in Conjunction with the ACM SIGKDD 2008, pp. 1–7. ACM, New York (2008)

    Chapter  Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2005), pp. 886–893 (2005)

    Google Scholar 

  9. Hertz, T., Bar-Hillel, A., Weinshall, D.: Learning distance functions for image retrieval. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2004), vol. 2, pp. II-570–II-577 (2004)

    Google Scholar 

  10. Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In: Proc of IEEE International Conference on Computer Vision (ICCV 2009), pp. 309–316 (2009)

    Google Scholar 

  11. Makadia, A., Pavlovic, V., Kumar, S.: A New Baseline for Image Annotation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 316–329. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Wang, X.J., Zhang, L., Liu, M., Li, Y., Ma, W.Y.: Arista - image search to annotation on billions of web photos. In: Proc of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 2987–2994 (2010)

    Google Scholar 

  13. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical classification. J. Mach. Learn. Res. 7, 31–54 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Bi, W., Kwok, J.: Multi-label classification on tree- and dag-structured hierarchies. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 17–24. ACM, New York (2011)

    Google Scholar 

  15. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: VLDB 1994, Proceedings of 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)

    Google Scholar 

  16. Gilbert, A., Bowden, R.: igroup: Weakly supervised image and video grouping. In: Proc. of International Conference on Computer Vision, ICCV 2011 (2011)

    Google Scholar 

  17. Lowe, D.: Distinctive Image Features from Scale-invariant Keypoints. Proc of International Jounral of Computer Vision (IJCV) 60, 91–110 (2004)

    Article  Google Scholar 

  18. Cai, H., Mikolajczyk, K., Matas, J.: Learning linear discriminant projections for dimensionality reduction of image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence (2010)

    Google Scholar 

  19. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proc. of the 1993 ACM SIGMOD International Conference on Management of Data SIGMOD 1993, pp. 207–216 (1993)

    Google Scholar 

  20. Huiskes, M., Lew, M.: The mir flickr retreieval evaluation. In: Proc of MIR (2008)

    Google Scholar 

  21. Oliva, A., Torralba, A.: Modelling the shape of the scene: a holistic representation of the spatial envelope. Proc of International Journal of Computer Vision, IJCV 2001 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  22. Nowak, S.: Overview of the Photo Annotation Task in ImageCLEF@ICPR. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 138–151. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gilbert, A., Bowden, R. (2013). A Picture Is Worth a Thousand Tags: Automatic Web Based Image Tag Expansion. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics