Nothing Special   »   [go: up one dir, main page]

Skip to main content

Two Phase Extraction Method for Extracting Real Life Tweets Using LDA

  • Conference paper
Web Technologies and Applications (APWeb 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7808))

Included in the following conference series:

Abstract

Nowadays, many twitter users tweet their personal affairs. Some of these posts can be quite beneficial for real life, for example, Eating, Appearance, Living, Disasters, and so on. In this paper, we propose a two phase extracting method for selecting beneficial tweets. In the first phase, many topics are extracted from a sea of tweets using Latent Dirichlet Allocation (LDA). In the second phase, associations between many topics and fewer aspects is built using a small set of labeled tweets. To enhance accuracy, the weight of feature words is calculated by information gain. Our prototype system demonstrates that the proposed method can extract the aspects of each unknown tweet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yamamoto, M., Ogasawara, H., Suzuki, I., Furukawa, M.: Tourism informatics:9. information propagation network for 2012 tohoku earthquake and tsunami on twitter. IPSJ Magazine 53(11), 1184–1191 (2012) (in Japanese)

    Google Scholar 

  2. Yamamoto, S., Satoh, T.: Real life information extraction method from twitter. In: The 4th Forum on Data Engineering and Information Management (DEIM 2012) F3-4 (2012) (in Japanese)

    Google Scholar 

  3. Kurashima, T., Tezuka, T., Tanaka, K.: Blog map of experiences: Extracting and geographically mapping visitor experiences from urban blogs. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 496–503. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Inui, K., Abe, S., Morita, H., Eguchi, M., Sumida, A., Sao, C., Hara, K., Murakami, K., Matsuyoshi, S.: Experience mining: Building a large-scale database of personal experiences and opinions from web documents. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 314–321 (2008)

    Google Scholar 

  5. Ramage, D., Dumais, S., Liebling, D.: Characterizing microblogs with topic models. In: Proceedings of ICWSM 2010, pp. 130–137 (2010)

    Google Scholar 

  6. Bollen, J., Pepe, A., Mao, H.: Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In: Proceedings of WWW 2010, pp. 450–453 (2010)

    Google Scholar 

  7. Diakopoulous, N.A., Shamma, D.A.: Characterizing debate performance via aggregated twitter sentiment. In: Proceedings of CHI 2010, pp. 1195–1198 (2010)

    Google Scholar 

  8. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: Real-time event detection by social sensors. In: Proceedings of 18th International World Wide Web Conference, WWW 2010, pp. 851–860 (2010)

    Google Scholar 

  9. Zhao, X., Jiang, J., He, J., Song, Y., Achananuparp, P., Lim, E.P., Li, X.: Topical key phrase extraction from twitter. In: The 49th Annual Meeting of the Association for Computational Linguistics, pp. 379–388 (2011)

    Google Scholar 

  10. Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 International Conference on Management of Data, pp. 1155–1158 (2010)

    Google Scholar 

  11. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  12. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of Science 101, 5228–5235 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamamoto, S., Satoh, T. (2013). Two Phase Extraction Method for Extracting Real Life Tweets Using LDA. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds) Web Technologies and Applications. APWeb 2013. Lecture Notes in Computer Science, vol 7808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37401-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37401-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37400-5

  • Online ISBN: 978-3-642-37401-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics