Nothing Special   »   [go: up one dir, main page]

Skip to main content

High Level Sensor Data Fusion of Radar and Lidar for Car-Following on Highways

  • Chapter
  • First Online:
Recent Advances in Robotics and Automation

Part of the book series: Studies in Computational Intelligence ((SCI,volume 480))

Abstract

We present a real-time algorithm which enables an autonomous car to comfortably follow other cars at various speeds while keeping a safe distance. We focus on highway scenarios. A velocity and distance regulation approach is presented that depends on the position as well as the velocity of the followed car. Radar sensors provide reliable information on straight lanes, but fail in curves due to their restricted field of view. On the other hand, lidar sensors are able to cover the regions of interest in almost all situations, but do not provide precise speed information. We combine the advantages of both sensors with a sensor fusion approach in order to provide permanent and precise spatial and dynamical data. Our results in highway experiments with real traffic will be described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Buehler, K. Iagnemma, S. Singh, The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, Volume 56 of Springer Tracts in Advanced Robotics (Springer, New York, 2009)

    Google Scholar 

  2. B. Khaleghi, A. Khamis, F.O. Karray, S.N. Razavi, Multisensor Data Fusion: A Review of the State-of-the-Art. Information Fusion, 2011

    Google Scholar 

  3. N. Kaempchen, K.C. Fuerstenberg, A.G. Skibicki, K.C.J. Dietmayer, Sensor Fusion for Multiple Automotive Active Safety and Comfort Applications (2004), pp. 137–163

    Google Scholar 

  4. A. Ewald, Multisensor obstacle detection and tracking. Image Vis. Comput. 18, 389–396 (2000)

    Article  Google Scholar 

  5. J. Dickmann, F. Diewald, M. Maehlisch, J. Klappstein, S. Zuther, S. Pietzsch, S. Hahn, M Munz, Environmental Perception for Future Integrated Safety Systems (2009)

    Google Scholar 

  6. B. Yamauchi, All-weather Perception for Man-portable Robots using Ultra-wideband Radar (2010), pp. 3610–3615

    Google Scholar 

  7. C. Blanc, L. Trassoudaine, Y. Le Guilloux, R. Moreira, Track to Track Fusion Method Applied to Road Obstacle Detection (2004)

    Google Scholar 

  8. M. Skutek, Ein PreCrash-System auf Basis multisensorieller Umgebungserfassung. PhD thesis, Technische Universitaet Chemnitz, 2006

    Google Scholar 

  9. M. Darms, P. Rybski, C. Urmson, An adaptive model switching approach for a multisensor tracking system used for autonomous driving in an urban environment. 2009, 521–530 (2008)

    Google Scholar 

  10. H. Winner, S. Hakuli, G. Wolf, Handbuch Fahrassistenzsysteme. Vieweg+Teubner and GMV Fachverlag GmbH, 2009

    Google Scholar 

  11. N. Kaempchen, K. Dietmayer, in Data Synchronization Strategies for Multi-sensor Fusion. Proceedings of the IEEE conference on intelligent transportation systems (2003), pp. 1–9

    Google Scholar 

  12. W. Wang, X. Huang, M. Wang, Out-of-sequence measurement algorithm based on gaussian particle filter. Inf. Technol. J. 9, 942–948 (2010)

    Article  Google Scholar 

  13. Y. Bar-Shalom, M. Mallick, H. Chen, One-step solution for the general out-of-sequence-measurement problem in tracking. Aerospace (2002)

    Google Scholar 

  14. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  15. J. Gao, C. Harris, Some remarks on kalman filters for the multisensor fusion. Inf. Fusion 3(3), 191–201 (2002)

    Article  MathSciNet  Google Scholar 

  16. B.C. Ooi, Spatial kd-Tree: A Data Structure for Geographic, Database (1987)

    Google Scholar 

  17. P. Abbeel, A. Coates, M. Montemerlo, A.Y. Ng, S. Thrun, in Discriminative Training of Kalman Filters. Proceedings of robotics: science and systems (2005)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the German federal ministry of education and research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schnürmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schnürmacher, M., Göhring, D., Wang, M., Ganjineh, T. (2013). High Level Sensor Data Fusion of Radar and Lidar for Car-Following on Highways. In: Sen Gupta, G., Bailey, D., Demidenko, S., Carnegie, D. (eds) Recent Advances in Robotics and Automation. Studies in Computational Intelligence, vol 480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37387-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37387-9_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37386-2

  • Online ISBN: 978-3-642-37387-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics