Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluating the Impact of Syntax and Semantics on Emotion Recognition from Text

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7817))

Abstract

In this paper, we systematically analyze the effect of incorporating different levels of syntactic and semantic information on the accuracy of emotion recognition from text. We carry out the evaluation in a supervised learning framework, and employ tree kernel functions as an intuitive and effective way to generate different feature spaces based on structured representations of the input data. We compare three different formalisms to encode syntactic information enriched with semantic features. These features are obtained from hand-annotated resources as well as distributional models. For the experiments, we use three datasets annotated according to the same set of emotions. Our analysis indicates that shallow syntactic information can positively interact with semantic features. In addition, we show how the three datasets can hardly be combined to learn more robust models, due to inherent differences in the linguistic properties of the texts or in the annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chaffar, S., Inkpen, D.: Using a heterogeneous dataset for emotion analysis in text. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 62–67. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: SAC 2008: Proceedings of the ACM symposium on Applied computing, pp. 1556–1560. ACM, New York (2008)

    Google Scholar 

  3. Aman, S., Szpakowicz, S.: Using Roget’s thesaurus for fine-grained emotion recognition. In: Proceedings of IJCNLP, pp. 296–302 (2008)

    Google Scholar 

  4. Ekman, P.: Facial expression and emotion. American Psychologist 48, 384–392 (1993)

    Article  Google Scholar 

  5. Boser, B.E., Guyon, I., Vapnik, V.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory (1992)

    Google Scholar 

  6. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)

    Google Scholar 

  7. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: kernels over discrete structures, and the voted perceptron. In: Proceedings of ACL 2002, Stroudsburg, PA, USA, pp. 263–270 (2002)

    Google Scholar 

  8. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment Analysis of Twitter Data. In: Proceedings of the Workshop on Language in Social Media, pp. 30–38. Association for Computational Linguistics (2011)

    Google Scholar 

  9. Strapparava, C., Valitutti, A.: WordNet-Affect: an affective extension of WordNet. In: Proceedings of LREC, vol. 4, pp. 1083–1086 (2004)

    Google Scholar 

  10. Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedings of LREC, pp. 417–422 (2006)

    Google Scholar 

  11. Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)

    MathSciNet  Google Scholar 

  12. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in Neural Information Processing Systems, vol. 14, pp. 625–632. MIT Press (2001)

    Google Scholar 

  13. Haussler, D.: Convolution kernels on discrete structures. Technical report, Dept. of Computer Science, University of California at Santa Cruz (1999)

    Google Scholar 

  14. Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Moschitti, A., Quarteroni, S., Basili, R., Manandhar, S.: Exploiting Syntactic and Shallow Semantic Kernels for Question/Answer Classification. In: Proceedings of ACL 2007 (2007)

    Google Scholar 

  16. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C., Scholkopf, B.: Text classification using string kernels. Journal of Machine Learning Research 2, 563–569 (2002)

    Google Scholar 

  17. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word sequence kernels. Journal of Machine Learning Research 3, 1059–1082 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Moschitti, A., Pighin, D., Basili, R.: Tree Kernels for Semantic Role Labeling. Computational Linguistics 34, 193–224 (2008)

    Article  MathSciNet  Google Scholar 

  19. Chaumartin, F.R.: Upar7: a knowledge-based system for headline sentiment tagging. In: Proceedings of SemEval 2007, pp. 422–425. Association for Computational Linguistics, Stroudsburg (2007)

    Google Scholar 

  20. Katz, P., Singleton, M., Wicentowski, R.: Swat-mp:the semeval-2007 systems for task 5 and task 14. In: Proceedings of the SemEval 2007, pp. 308–313. Association for Computational Linguistics, Prague (2007)

    Google Scholar 

  21. Kozareva, Z., Navarro, B., Vazquez, S., Montoyo, A.: Ua-zbsa: A headline emotion classification through web information. In: Proceedings of SemEval 2007, pp. 334–337. Association for Computational Linguistics, Prague (2007)

    Google Scholar 

  22. Das, D., Bandyopadhyay, S.: Identifying emotional expressions, intensities and sentence level emotion tags using a supervised framework. Emotion 1, 95–104 (2010)

    Google Scholar 

  23. Aman, S., Szpakowicz, S.: Identifying expressions of emotion in text. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 196–205. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Alm, E.C.O.: Affect in Text and Speech. PhD thesis, University of Illinois at Urbana-Champaign (2008)

    Google Scholar 

  25. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of the International Conference on New Methods in Language Processing, Manchester, UK (1994)

    Google Scholar 

  26. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of ACL 2003, Stroudsburg, PA, USA, pp. 423–430 (2003)

    Google Scholar 

  27. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)

    Article  Google Scholar 

  28. Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Mohammad, S.M.: From once upon a time to happily ever after: Tracking emotions in mail and books. Decision Support Systems 53, 730–741 (2012)

    Article  Google Scholar 

  30. Mohammad, S.: Portable features for classifying emotional text. In: Proceedings of NAACL HLT 2012, Stroudsburg, PA, USA, pp. 587–591 (2012)

    Google Scholar 

  31. Bloehdorn, S., Basili, R., Cammisa, M., Moschitti, A.: Semantic Kernels for Text Classification based on Topological Measures of Feature Similarity. In: Proceedings of ICDM, Hong Kong (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Özbal, G., Pighin, D. (2013). Evaluating the Impact of Syntax and Semantics on Emotion Recognition from Text. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2013. Lecture Notes in Computer Science, vol 7817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37256-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37256-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37255-1

  • Online ISBN: 978-3-642-37256-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics