Abstract
In this paper, we systematically analyze the effect of incorporating different levels of syntactic and semantic information on the accuracy of emotion recognition from text. We carry out the evaluation in a supervised learning framework, and employ tree kernel functions as an intuitive and effective way to generate different feature spaces based on structured representations of the input data. We compare three different formalisms to encode syntactic information enriched with semantic features. These features are obtained from hand-annotated resources as well as distributional models. For the experiments, we use three datasets annotated according to the same set of emotions. Our analysis indicates that shallow syntactic information can positively interact with semantic features. In addition, we show how the three datasets can hardly be combined to learn more robust models, due to inherent differences in the linguistic properties of the texts or in the annotation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chaffar, S., Inkpen, D.: Using a heterogeneous dataset for emotion analysis in text. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 62–67. Springer, Heidelberg (2011)
Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: SAC 2008: Proceedings of the ACM symposium on Applied computing, pp. 1556–1560. ACM, New York (2008)
Aman, S., Szpakowicz, S.: Using Roget’s thesaurus for fine-grained emotion recognition. In: Proceedings of IJCNLP, pp. 296–302 (2008)
Ekman, P.: Facial expression and emotion. American Psychologist 48, 384–392 (1993)
Boser, B.E., Guyon, I., Vapnik, V.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory (1992)
Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)
Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: kernels over discrete structures, and the voted perceptron. In: Proceedings of ACL 2002, Stroudsburg, PA, USA, pp. 263–270 (2002)
Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment Analysis of Twitter Data. In: Proceedings of the Workshop on Language in Social Media, pp. 30–38. Association for Computational Linguistics (2011)
Strapparava, C., Valitutti, A.: WordNet-Affect: an affective extension of WordNet. In: Proceedings of LREC, vol. 4, pp. 1083–1086 (2004)
Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedings of LREC, pp. 417–422 (2006)
Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)
Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in Neural Information Processing Systems, vol. 14, pp. 625–632. MIT Press (2001)
Haussler, D.: Convolution kernels on discrete structures. Technical report, Dept. of Computer Science, University of California at Santa Cruz (1999)
Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)
Moschitti, A., Quarteroni, S., Basili, R., Manandhar, S.: Exploiting Syntactic and Shallow Semantic Kernels for Question/Answer Classification. In: Proceedings of ACL 2007 (2007)
Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C., Scholkopf, B.: Text classification using string kernels. Journal of Machine Learning Research 2, 563–569 (2002)
Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word sequence kernels. Journal of Machine Learning Research 3, 1059–1082 (2003)
Moschitti, A., Pighin, D., Basili, R.: Tree Kernels for Semantic Role Labeling. Computational Linguistics 34, 193–224 (2008)
Chaumartin, F.R.: Upar7: a knowledge-based system for headline sentiment tagging. In: Proceedings of SemEval 2007, pp. 422–425. Association for Computational Linguistics, Stroudsburg (2007)
Katz, P., Singleton, M., Wicentowski, R.: Swat-mp:the semeval-2007 systems for task 5 and task 14. In: Proceedings of the SemEval 2007, pp. 308–313. Association for Computational Linguistics, Prague (2007)
Kozareva, Z., Navarro, B., Vazquez, S., Montoyo, A.: Ua-zbsa: A headline emotion classification through web information. In: Proceedings of SemEval 2007, pp. 334–337. Association for Computational Linguistics, Prague (2007)
Das, D., Bandyopadhyay, S.: Identifying emotional expressions, intensities and sentence level emotion tags using a supervised framework. Emotion 1, 95–104 (2010)
Aman, S., Szpakowicz, S.: Identifying expressions of emotion in text. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 196–205. Springer, Heidelberg (2007)
Alm, E.C.O.: Affect in Text and Speech. PhD thesis, University of Illinois at Urbana-Champaign (2008)
Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of the International Conference on New Methods in Language Processing, Manchester, UK (1994)
Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of ACL 2003, Stroudsburg, PA, USA, pp. 423–430 (2003)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)
Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)
Mohammad, S.M.: From once upon a time to happily ever after: Tracking emotions in mail and books. Decision Support Systems 53, 730–741 (2012)
Mohammad, S.: Portable features for classifying emotional text. In: Proceedings of NAACL HLT 2012, Stroudsburg, PA, USA, pp. 587–591 (2012)
Bloehdorn, S., Basili, R., Cammisa, M., Moschitti, A.: Semantic Kernels for Text Classification based on Topological Measures of Feature Similarity. In: Proceedings of ICDM, Hong Kong (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Özbal, G., Pighin, D. (2013). Evaluating the Impact of Syntax and Semantics on Emotion Recognition from Text. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2013. Lecture Notes in Computer Science, vol 7817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37256-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-37256-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37255-1
Online ISBN: 978-3-642-37256-8
eBook Packages: Computer ScienceComputer Science (R0)