Abstract
We show that the emergence of different structures in complex networks can be represented in terms of a phase transition for quantum gases. In particular, we propose a model of fermionic networks that allows to investigate the network evolution and its dependence on the system temperature. Simulations, performed in accordance with the cited model, illustrate that the transition from classical random networks to scale-free networks mimics a cooling process in quantum gases. Furthermore, we found that, at very low temperatures, a winner-takes-all structure emerges. We deem this model useful for studying the evolution of complex networks and also for representing competitive dynamics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, R., Barabasi, A.L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–97 (2002)
Guimer, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 68 (2003)
Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trend in Cognitive Sciences 8(9) (2004)
Erdos, P., Renyi, A.: On the Evolution of Random Graphs. pubblication of the mathematical institute of the hungarian academy of sciences, pp. 17–61 (1960)
Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature, 40–442 (1998)
Bianconi, G., Barabasi, A.L.: Bose-Einstein Condensation in Complex Networks. Physical Review Letters 86, 5632–5635 (2001)
Bianconi, G.: Quantum statistics in complex networks. Physical Review E 66 (2002)
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguna, M.: Hyperbolic Geometry of Complex Networks. Physical Review E (2010)
Shen, Y., Zhu, D.-L., Liu, W.-M.: Fermi–Dirac Statistics of Complex Networks. Chinese Physics Letters 22, 5 (2005)
Baronchelli, A., Catanzaro, M., Pastor-Satorras, R.: Bosonic reaction-diffusion processes on scale-free networks. Physical Reviw E 78 (2008)
Perseguers, S., Lewenstein, M., Acin, A., Cirac, J.I.: Quantum complex networks. Nature Physics 6 (2010)
Huang, K.: Statistical Mechanics. John Wiley and Sons (1987)
Hartonen, T., Annila, A.: Natural Networks as Thermodynamic Systems. Complexity (2012)
Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random Graphs Models of Social Networks. PNAS 99, 2566–2572 (2002)
Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law distributions in empirical data. SIAM Review 51, 661–703 (2009)
Newman, M.E.J.: The structure and function of complex networks. SIAM Reviews 45, 167–256 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Javarone, M.A., Armano, G. (2013). Phase Transitions in Fermionic Networks. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-37213-1_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37212-4
Online ISBN: 978-3-642-37213-1
eBook Packages: Computer ScienceComputer Science (R0)