Nothing Special   »   [go: up one dir, main page]

Skip to main content

Phase Transitions in Fermionic Networks

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7824))

Included in the following conference series:

  • 1761 Accesses

Abstract

We show that the emergence of different structures in complex networks can be represented in terms of a phase transition for quantum gases. In particular, we propose a model of fermionic networks that allows to investigate the network evolution and its dependence on the system temperature. Simulations, performed in accordance with the cited model, illustrate that the transition from classical random networks to scale-free networks mimics a cooling process in quantum gases. Furthermore, we found that, at very low temperatures, a winner-takes-all structure emerges. We deem this model useful for studying the evolution of complex networks and also for representing competitive dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, R., Barabasi, A.L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Guimer, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 68 (2003)

    Google Scholar 

  3. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trend in Cognitive Sciences 8(9) (2004)

    Google Scholar 

  4. Erdos, P., Renyi, A.: On the Evolution of Random Graphs. pubblication of the mathematical institute of the hungarian academy of sciences, pp. 17–61 (1960)

    Google Scholar 

  5. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature, 40–442 (1998)

    Google Scholar 

  6. Bianconi, G., Barabasi, A.L.: Bose-Einstein Condensation in Complex Networks. Physical Review Letters 86, 5632–5635 (2001)

    Article  Google Scholar 

  7. Bianconi, G.: Quantum statistics in complex networks. Physical Review E 66 (2002)

    Google Scholar 

  8. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguna, M.: Hyperbolic Geometry of Complex Networks. Physical Review E (2010)

    Google Scholar 

  9. Shen, Y., Zhu, D.-L., Liu, W.-M.: Fermi–Dirac Statistics of Complex Networks. Chinese Physics Letters 22, 5 (2005)

    Article  Google Scholar 

  10. Baronchelli, A., Catanzaro, M., Pastor-Satorras, R.: Bosonic reaction-diffusion processes on scale-free networks. Physical Reviw E 78 (2008)

    Google Scholar 

  11. Perseguers, S., Lewenstein, M., Acin, A., Cirac, J.I.: Quantum complex networks. Nature Physics 6 (2010)

    Google Scholar 

  12. Huang, K.: Statistical Mechanics. John Wiley and Sons (1987)

    Google Scholar 

  13. Hartonen, T., Annila, A.: Natural Networks as Thermodynamic Systems. Complexity (2012)

    Google Scholar 

  14. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random Graphs Models of Social Networks. PNAS 99, 2566–2572 (2002)

    Article  MATH  Google Scholar 

  15. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law distributions in empirical data. SIAM Review 51, 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Newman, M.E.J.: The structure and function of complex networks. SIAM Reviews 45, 167–256 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Javarone, M.A., Armano, G. (2013). Phase Transitions in Fermionic Networks. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37213-1_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37212-4

  • Online ISBN: 978-3-642-37213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics