Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicting Mobile Call Behavior via Subspace Methods

  • Conference paper
Social Computing, Behavioral-Cultural Modeling and Prediction (SBP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7812))

Abstract

We investigate behavioral prediction approaches based on subspace methods such as principal component analysis (PCA) and independent component analysis (ICA). Moreover, we propose a personalized sequential prediction approach to predict next day behavior based on features extracted from past behavioral data using subspace methods. The proposed approach is applied to the individual call (voice calls and short messages) behavior prediction task. Experimental results on the Nokia mobility data challenge (MDC) dataset are used to show the feasibility of our proposed prediction approach. Furthermore, we investigate whether prediction accuracy can be improved (i) when specific call type (voice call or short message), instead of the general call behavior prediction, is considered in the prediction task, and (ii) when workday and weekend scenarios are considered separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eagle, N., Pentland, A., Lazer, D.: Inferring Social Network Structure using Mobile Phone Data. Proceedings of the National Academy of Sciences 106(36), 15274–15278 (2009)

    Article  Google Scholar 

  2. Eagle, N., Pentland, A.S.: Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and Sociobiology 63, 1057–1066 (2009)

    Article  Google Scholar 

  3. Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4-5), 411–430 (2000)

    Article  Google Scholar 

  4. Bell, A., Sejnowski, T.J.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  5. Jolliffe, I.T.: Principal Component Analysis. Springer-Verlag New York, Inc. (1997)

    Google Scholar 

  6. Laurila, J.K., Gatica-Perez, D., Aad, I., Blom, J., Bornet, O., Do, T.-M.-T., Dousse, O., Eberle, J., Miettinen, M.: The mobile data challenge: Big data for mobile computing research. In: Proc. on Mobile Data Challenge by Nokia Workshop in Conjunction with Int. Conf. on Pervasive Computing, Newcastle (June 2012)

    Google Scholar 

  7. Turk, M., Pentland, A.S.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  8. ICA:DTU Toolbox, http://cogsys.imm.dtu.dk/toolbox/ica/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dai, P., Yang, W., Ho, SS. (2013). Predicting Mobile Call Behavior via Subspace Methods. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science, vol 7812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37210-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37210-0_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37209-4

  • Online ISBN: 978-3-642-37210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics