Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intruder or Welcome Friend: Inferring Group Membership in Online Social Networks

  • Conference paper
Social Computing, Behavioral-Cultural Modeling and Prediction (SBP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7812))

Abstract

Inferring Online Social Networks (OSN) group members may help to evaluate the authenticity of an applicant asking to join a certain group, and secure vulnerable populations online, such as children. We propose machine learning based methods, which associate OSN members’ affiliation with virtual groups based on personal, topological, and group affiliation features. The study applies and evaluates the methods empirically, on two social networks (Ning and TheMarker). The experimental results demonstrate that one can accurately determine the group genuine members. Our study compares personal, topological and group based classification models. The results show that topological and group affiliation attributes contribute the most to group inference accuracy. Additionally, we examine the relations among the groups and identify group clustering tendencies where some groups are more tightly connected than others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. (2002)

    Google Scholar 

  2. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5) (2010)

    Google Scholar 

  3. Boccalettia, S., Latora, V., Moreno, Y., Chavezf, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  4. Fire, M., et al.: Link Prediction in Social Networks Using Computationally Efficient Topological Features. IEEE SOCIALCOM (2011)

    Google Scholar 

  5. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99 (2002)

    Google Scholar 

  6. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Community structure in online collegiate social networks. eprint arXiv:0809.0690 (2008)

    Google Scholar 

  7. Traud, A.L., Mucha, P.J., Porter, M.A., Kelsic, E.D.: Comparing community structure to characteristics in online collegiate social networks. SIAM Review (2011)

    Google Scholar 

  8. Friggeri, A., Chelius, G., Fleury, E.: Triangles to Capture Social Cohesion. IEEE Passat 2011 (2011)

    Google Scholar 

  9. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001)

    Article  Google Scholar 

  10. Menon, A.K., Elkan, C.: Link prediction via matrix factorization. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part II. LNCS, vol. 6912, pp. 437–452. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

    Google Scholar 

  12. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory and Experiment 2008 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lesser, O., Tenenboim-Chekina, L., Rokach, L., Elovici, Y. (2013). Intruder or Welcome Friend: Inferring Group Membership in Online Social Networks. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science, vol 7812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37210-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37210-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37209-4

  • Online ISBN: 978-3-642-37210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics