Abstract
Multiclass classification is a common requirement of many land cover/land use applications, one of the pillars of land science studies. Even though genetic programming has been applied with success to a large number of applications, it is not particularly suited for multiclass classification, thus limiting its use on such studies. In this paper we take a step forward towards filling this gap, investigating the performance of recently defined geometric semantic operators on two land cover/land use multiclass classification problems and also on a benchmark problem. Our results clearly indicate that genetic programming using the new geometric semantic operators outperforms standard genetic programming for all the studied problems, both on training and test data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic programming. Genetic Programming and Evolvable Machines 10(3), 307–337 (2009)
Corder, G., Foreman, D.: Nonparametric statistics for Non-Statisticians. Wiley, New York (2009)
Espejo, P., Ventura, S., Herrera, F.: A survey on the application of genetic programming to classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 40(2), 121–144 (2010)
Gustafson, S., Vanneschi, L.: Crossover-based tree distance in genetic programming. IEEE Transactions on Evolutionary Computation 12(4), 506–524 (2008)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Koza, J.R.: Human-competitive results produced by genetic programming. Genetic Programming and Evolvable Machines 11(3/4), 251–284 (2010); Tenth Anniversary Issue: Progress in Genetic Programming and Evolvable Machines
Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: GECCO 2009: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 987–994. ACM (2009)
Lambin, E.R., Geist, H., Rindfuss, R.R.: Local processes with global impacts. In: Lambin, E.R., Geist, H. (eds.) Land Use and Land Cover Change, pp. 1–8. Springer (2006)
McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008)
Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)
Norris, K., Asase, A., Collen, B., Gockowksi, J., Mason, J., Phalan, B., Wade, A.: Biodiversity in a forest-agriculture mosaic – the changing face of west african rainforests. Biological Conservation 143, 2341–2350 (2010)
Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric semantic GP applied to predicting pharmacokinetic parameters. In: Proceedings of EuroGP-2013. Springer (to appear, 2013)
Zhang, M., Smart, W.: Multiclass Object Classification Using Genetic Programming. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 369–378. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castelli, M. et al. (2013). Land Cover/Land Use Multiclass Classification Using GP with Geometric Semantic Operators. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-37192-9_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37191-2
Online ISBN: 978-3-642-37192-9
eBook Packages: Computer ScienceComputer Science (R0)