Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Population-Based Strategic Oscillation Algorithm for Linear Ordering Problem with Cumulative Costs

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7832))

  • 1492 Accesses

Abstract

This paper presents a Population-based Strategic Oscillation (denoted by PBSO) algorithm for solving the linear ordering problem with cumulative costs (denoted by LOPCC). The proposed algorithm integrates several distinguished features, such as an adaptive strategic oscillation local search procedure and an effective population updating strategy. The proposed PBSO algorithm is compared with several state-of-the-art algorithms on a set of public instances up to 100 vertices, showing its efficacy in terms of both solution quality and efficiency. Moreover, several important ingredients of the PBSO algorithm are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1), 241–250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lü, Z., Glover, F., Hao, J.K.: A hybrid metaheuristic approach to solving the UBQP Problem. European Journal of Operational Research 207(3), 1254–1262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benvenuto, N., Carnevale, N., Tomasin, S.: Optimum power control and ordering in SIC receivers for uplink CDMA systems. In: IEEE International Conference on Communications, ICC 4, pp. 2333–2337 (2005)

    Google Scholar 

  4. Bertacco, L., Brunetta, L., Fischetti, M.: The linear ordering problem with cumulative costs. European Journal of Operational Research 189(3), 1345–1357 (2005)

    Article  MathSciNet  Google Scholar 

  5. Duarte, A., Laguna, M., Marti, R.: Tabu search for the linear ordering problem with cumulative costs. Computational Optimization and Applications 48, 697–715 (2011)

    Article  MathSciNet  Google Scholar 

  6. Duarte, A., Marti, R., Alvarez, A., Angel-Bello, F.: Metaheuristics for the linear ordering problem with cumulative costs. European Journal of Operational Research 216(2), 270–277 (2012)

    Article  MathSciNet  Google Scholar 

  7. Villanueva, D.T., Huacuja, H.J.F., Duarte, A., Rodolfo Pazos, R., Valadez, J.M.C., Soberanes, H.J.P.: Improving Iterated Local Search Solution for the Linear Ordering Problem with Cumulative Costs (LOPCC). In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part II. LNCS (LNAI), vol. 6277, pp. 183–192. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Righini, G.: A branch-and bound algorithm for the linear ordering problem with cumulative costs. European Journal of Operational Research 186(3), 965–971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schiavinotto, T., Stützle, T.: The linear ordering problem: Instances, search space analysis and algorithms. European Journal of Operational Research 177, 2033–2049 (2007)

    Article  Google Scholar 

  10. Glover, F., Hao, J.K.: The case for strategic oscillation. Annals OR 183(1), 163–173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the linear ordering problem with cumulative costs. European Journal of Operational Research 177, 2033–2049 (2007)

    Article  MATH  Google Scholar 

  12. Reinelt, G., Hofmann, H.H., Wille, R.: The linear ordering problem: Algorithms and applications. Research and Exposition in Mathematics 8 (1985)

    Google Scholar 

  13. Laguna, M., Marti, R., Campos, V.: Intensification and diversification with elite tabu search solutions for the linear ordering problem. Computers & OR 26(12), 1217–1230 (1999)

    Article  MATH  Google Scholar 

  14. Proakis, J.G.: Digital Comunnications, 4th edn. McGraw-Hill (2004)

    Google Scholar 

  15. Holma, H., Toskala, A.: WCDMA for UMTS: Radio access for Third generation mobile communications. Wiley, New York (2000)

    Google Scholar 

  16. Glover, F., Laguna, M.: General purpose heuristics for integer programming-part II. J. Heuristics 3(2), 161–179 (1997)

    Article  MATH  Google Scholar 

  17. Glover, F.: Multi-start and strategic oscillation methods - Principles to exploit adaptive memory. In: Laguna, M., Gonzales Velarde, J.L. (eds.) Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer Science and Operations Research, pp. 1–24 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiao, W., Chu, W., Lü, Z., Ye, T., Liu, G., Cui, S. (2013). A Population-Based Strategic Oscillation Algorithm for Linear Ordering Problem with Cumulative Costs. In: Middendorf, M., Blum, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2013. Lecture Notes in Computer Science, vol 7832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37198-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37198-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37197-4

  • Online ISBN: 978-3-642-37198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics