Nothing Special   »   [go: up one dir, main page]

Skip to main content

Do Hypervolume Regressions Hinder EMOA Performance? Surprise and Relief

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7811))

Included in the following conference series:

Abstract

Decreases in dominated hypervolume w.r.t a fixed reference point for the (μ + 1)-SMS-EMOA are able to appear. We examine the impact of these decreases and different reference point handling techniques by providing four different algorithmic variants for selection. In addition, we show that yet further decreases can occur due to numerical instabilities that were previously not being expected. Fortunately, our findings do indicate that all detected decreases do not have a negative effect on the overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. Evolutionary Computation 19(1), 45–76 (2011)

    Article  Google Scholar 

  2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  3. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Congress on Evolutionary Computation (CEC 2002), pp. 825–830. IEEE Press (2002)

    Google Scholar 

  6. Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation 15(1), 1–28 (2007)

    Article  Google Scholar 

  7. Judt, L., Mersmann, O., Naujoks, B.: Non-monotonicity of Obtained Hypervolume in 1-greedy S-Metric Selection. Journal of Multi-Criteria Decision Analysis (2011), maanvs03.gm.fh-koeln.de/webpub/CIOPReports.d/Judt11a.d/ (accepted for publication, preprint)

  8. Judt, L., Mersmann, O., Naujoks, B.: Effect of SMS-EMOA Parameterizations on Hypervolume Decreases. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 419–424. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Mersmann, O.: emoa: Evolutionary Multiobjective Optimization Algorithms (2011), http://CRAN.R-project.org/package=emoa (R package version 0.4-8)

  10. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  11. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms — A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Judt, L., Mersmann, O., Naujoks, B. (2013). Do Hypervolume Regressions Hinder EMOA Performance? Surprise and Relief. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37140-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37139-4

  • Online ISBN: 978-3-642-37140-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics