Nothing Special   »   [go: up one dir, main page]

Skip to main content

Inferring E. coli SOS Response Pathway from Gene Expression Data Using IST-DBN with Time Lag Estimation

  • Conference paper
Advances in Biomedical Infrastructure 2013

Part of the book series: Studies in Computational Intelligence ((DSCC,volume 477))

  • 594 Accesses

Abstract

Driven to discover the vast information and comprehend the fundamental mechanism of gene regulations, gene regulatory networks (GRNs) inference from gene expression data has gathered the interests of many researchers which is otherwise unfeasible in the past due to technology constraint. The dynamic Bayesian network (DBN) has been widely used to infer GRNs as it is capable of handling time-series gene expression data and feedback loops. However, the frequently occurred missing values in gene expression data, the incapability to deal with transcriptional time lag, and the excessive computation time triggered by the large search space, are attributed to restraint the effectiveness of DBN in inferring GRNs from gene expression data. This paper proposes a DBN-based model (IST-DBN) with missing values imputation, potential regulators selection, and time lag estimation to address these problems. To assess the performance of IST-DBN, we applied the model on the E. coli SOS response pathway time-series expression data. The experimental results showed IST-DBN has higher accuracy and faster computation time in recognising gene-gene relationships when compared with existing DBN-based model and conventional DBN. We also believe that the ensuing networks from IST-DBN are applicable as a common framework for prospective gene intervention study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, W.P., Tzou, W.S.: Computational methods for discovering gene networks from expression data. Brief Bioinform. 10(4), 408–423 (2009)

    Google Scholar 

  2. Jornsten, R., Wang, H.Y., Welsh, W.J., Ouyang, M.: DNA microarray data imputation and significance analysis of differential expression. Bioinformatics 21(22), 4155–4161 (2005)

    Article  Google Scholar 

  3. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)

    Google Scholar 

  4. Muro, S., Takemasa, I., Oba, S., Matoba, R., Ueno, N., Maruyama, C., Yamashita, R., Sekimoto, M., Yamamoto, H., Nakamori, S., Monden, M., Ishii, S., Kato, K.: Identification of expressed genes linked to malignancy of human colorectal carcinoma by parametric clustering of quantitative expression data. Genome Biol. (4), 21 (2003)

    Article  Google Scholar 

  5. Salgado, H., Gama-Castro, S., Peralta-Gil, M., Diaz-Peredo, E., Sanchez-Solano, F., Santos-Zavaleta, A., Martinez-Flores, I., Jimenez-Jacinto, V., Bonavides-Martinez, C., Segura-Salazar, J., Martinez-Antonio, A., Collado-Vides, J.: RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 34, 394–397 (2005)

    Article  Google Scholar 

  6. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Bio. 9(10), 770–780 (2008)

    Article  Google Scholar 

  7. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyse expression data. J. Comp. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  8. Murphy, K., Mian, S.: Modelling gene expression data using dynamic Bayesian networks. Technical report, Computer Science Division, University of California, Berkeley (1999)

    Google Scholar 

  9. Ouyang, M., Welsh, W.J., Geogopoulos, P.: Gaussian mixture clustering and imputation of microarray data. Bioinformatics 20(6), 917–923 (2004)

    Article  Google Scholar 

  10. Jia, Y., Huan, J.: Constructing non-stationary dynamic Bayesian networks with a flexible lag choosing mechanism. BMC Bioinformatics (11), 27 (2010)

    Article  Google Scholar 

  11. Chai, L.E., Mohamad, M.S., Deris, S., Chong, C.K., Choon, Y.W., Ibrahim, Z., Omatu, S.: Inferring gene regulatory networks from gene expression data by a dynamic bayesian network-based model. In: Omatu, S., De Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 379–386. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Kim, H., Golub, G., Park, H.: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21(2), 187–198 (2005)

    Article  Google Scholar 

  13. Yu, H., Luscombe, N.M., Qian, J., Gerstein, M.: Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet. 19, 422–427 (2003)

    Article  Google Scholar 

  14. Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. 99, 10555–10560 (2002)

    Article  Google Scholar 

  15. Radman, M.: Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli. Basic Life Sci. 5A, 255–367 (1975)

    Google Scholar 

  16. Wilczynski, B., Dojer, N.: BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics 25(2), 286–287 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian En Chai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chai, L.E., Mohamad, M.S., Deris, S., Chong, C.K., Choon, Y.W. (2013). Inferring E. coli SOS Response Pathway from Gene Expression Data Using IST-DBN with Time Lag Estimation. In: Sidhu, A., Dhillon, S. (eds) Advances in Biomedical Infrastructure 2013. Studies in Computational Intelligence, vol 477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37137-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37137-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37136-3

  • Online ISBN: 978-3-642-37137-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics