Abstract
Differentials estimation of discrete signals is almost mandatory in digital segmentation. In our previous work, we introduced the fast level-wise convolution (LWC) and its complexity of O(2n.log2(m)). We present convergence proofs of two LWC compatible kernel families. The first one is the pseudo-binomial family, and the second one the pseudo-Gaussian family. In the experimental part, we compare our method to the Digital Straight Segment tangent estimator. Tests are done on different digitized objects at different discretization step using the DGtal library.
Chapter PDF
Similar content being viewed by others
Keywords
References
DGtal: Digital geometry tools and algorithms library, http://liris.cnrs.fr/dgtal
De Vieilleville, F., Lachaud, J.O.: Comparison and improvement of tangent estimators on digital curves. Pattern Recognition 42(8), 1693–1707 (2009)
Esbelin, H., Malgouyres, R., Cartade, C.: Convergence of binomial-based derivative estimation for 2 noisy discretized curves. Theoretical Computer Science 412(36), 4805 (2011)
Gonzalez, D., Malgouyres, R., Esbelin, H.A., Samir, C.: Fast Level-Wise Convolution. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 223–233. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-34732-0_17
Heideman, M., Johnson, D., Burrus, C.: Gauss and the history of the fast fourier transform. IEEE ASSP Magazine 1(4), 14–21 (1984)
Johnson, S., Frigo, M.: A modified split-radix fft with fewer arithmetic operations. IEEE Transactions on Signal Processing 55(1), 111–119 (2007)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)
Lachaud, J., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25(10), 1572–1587 (2007)
Lindeberg, T.: Scale-space theory in computer vision. Springer (1994)
Lundy, T., Van Buskirk, J.: A new matrix approach to real ffts and convolutions of length 2 k. Computing 80(1), 23–45 (2007)
Malgouyres, R., Brunet, F., Fourey, S.: Binomial Convolutions and Derivatives Estimation from Noisy Discretizations. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 370–379. Springer, Heidelberg (2008)
Provot, L., Gérard, Y.: Estimation of the Derivatives of a Digital Function with a Convergent Bounded Error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gonzalez, D., Malgouyres, R., Esbelin, HA., Samir, C. (2013). Convergence of Level-Wise Convolution Differential Estimators. In: Gonzalez-Diaz, R., Jimenez, MJ., Medrano, B. (eds) Discrete Geometry for Computer Imagery. DGCI 2013. Lecture Notes in Computer Science, vol 7749. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37067-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-37067-0_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37066-3
Online ISBN: 978-3-642-37067-0
eBook Packages: Computer ScienceComputer Science (R0)