Abstract
Recently learning to rank has been widely used in real-time Twitter Search by integrating various of evidence of relevance and recency features into together. In real-time Twitter search, whereby the information need of a user is represented by a query at a specific time, users are interested in fresh messages. In this paper, we introduce a new ranking strategy to rerank the tweets by incorporating multiple features. Besides, an empirical study of learning to rank for real-time Twitter search is conducted by adopting the state-of-the-art learning to rank approaches. Experiments on the standard TREC Tweets11 collection show that both the listwise and pairwise learning to rank methods outperform baselines, namely the content-based retrieval models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C.: Terrier: A high performance and scalable information retrieval platform. In: SIGIR OSIR (2006)
Amati, G.: Probabilistic models for information retrieval based on divergence from randomness. PhD thesis, DCS, University of Glasgow (2003)
Amati, G., Amodeo, G., Bianchi, M., Celi, A., Nicola, C.D., Flammini, M., Gaibisso, C., Gambosi, G., Marcone, G.: Fub, iasi-cnr, UNIVAQ at TREC 2011. In: TREC (2011)
Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training. In: COLT, pp. 92–100 (1998)
Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring user influence in twitter: The million follower fallacy. In: ICWSM (2010)
Chapelle, O., Yang, Y.: Yahoo! Learning to Rank Challenge Overview. In: JMLR (2011)
Dong, A., Chang, Y., Zheng, Z., Mishne, G., Bai, J., Zhang, R., Buchner, K., Liao, C., Diaz, F.: Towards recency ranking in web search. In: WSDM, pp. 11–20 (2010)
Duan, Y., Jiang, L., Qin, T., Zhou, M., Shum, H.-Y.: An empirical study on learning to rank of tweets. In: COLING, pp. 295–303. Tsinghua University, Beijing (2010)
Duh, K., Kirchhoff, K.: Learning to rank with partially-labeled data. In: SIGIR, pp. 251–258 (2008)
Efron, M., Golovchinksy, G.: Estimation methods for ranking recent information. In: SIGIR, pp. 495–504 (2011)
El-Yaniv, R., Pechyony, D.: Stable Transductive Learning. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 35–49. Springer, Heidelberg (2006)
Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: LREC, pp. 417–422 (2006)
Ganjisaffar, Y., Caruana, R., Lope, C.: Bagging gradient-boosted trees for high precision, low variance ranking models. In: SIGIR, pp. 85–94 (2011)
Geng, X., Liu, T.-Y., Qin, T., Arnold, A., Li, H., Shum, H.-Y.: Query dependent ranking using k-nearest neighbor. In: SIGIR, pp. 115–122 (2008)
Hong, D., Wang, Q., Zhang, D., Si, L.: Query expansion and message-passing algorithms for TREC microblog track. In: TREC (2011)
Huang, X., Huang, Y., Wen, M., An, A., Liu, Y., Poon, J.: Applying data mining to pseudo-relevance feedback for high performance text retrieval. In: ICDM, pp. 295–306 (2006)
Joachims, T.: Optimizing search engines using clickthrough data. In: KDD, pp. 133–142 (2002)
Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598) (1983)
Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: WWW, pp. 591–600 (2010)
Lavrenko, V., Croft, W.B.: Relevance-based language models. In: SIGIR, pp. 120–127 (2001)
Li, X., Croft, W.B.: Time-based language models. In: CIKM, pp. 469–475 (2003)
Li, Y., Zhang, Z., Lv, W., Xie, Q., Lin, Y., Xu, R., Xu, W., Chen, G., Guo, J.: PRIS at TREC 2011 microblog track. In: TREC (2011)
Liu, T.: Learning to rank for information retrieval. Foundations and Trends in Information Retrieval (3), 225–331 (2009)
Louvan, S., Ibrahim, M., Adriani, M., Vania, C., Distiawan, B., Wanagiri, M.Z.: University of Indonesia at TREC 2011 microblog track. In: TREC (2011)
Metzler, D., Cai, C.: Usc/isi at TREC 2011: Microblog track. In: TREC (2011)
Miyanishi, T., Okamura, N., Liu, X., Seki, K., Uehara, K.: TREC 2011 microblog track experiments at KOBE university. In: TREC, Gaithersburg, MD (2011)
Ounis, I., Macdonald, C., Lin, J., Soboroff, I.: Overview of the TREC 2011 microblog track. In: TREC, Gaithersburg, MD (2011)
Ounis, I., Macdonald, C., Soboroff, I.: On the TREC blog track. In: ICWSM, Seattle, WA (2008)
Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gatford, M., Payne, A.: Okapi at TREC-4. In: TREC (1995)
Rocchio, J.: Relevance feedback in information retrieval, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)
Sellamanickam, S., Garg, P., Selvaraj, S.K.: A pairwise ranking based approach to learning with positive and unlabeled examples. In: CIKM, pp. 663–672 (2011)
Vapnik, V.N.: Statistical learning theory. Wiley, New York (1998)
Veloso, A.A., Almeida, H.M., Gonçalves, M.A., Meira Jr., W.: Learning to rank at query-time using association rules. In: SIGIR, pp. 267–274 (2008)
Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Wu, J., Yang, Z., Lin, Y., Lin, H., Ye, Z., Xu, K.: Learning to rank using query-level regression. In: SIGIR, pp. 1091–1092 (2011)
Wu, Q., Burges, C., Svore, K., Cao, J.: Ranking boosting and model adaptation. Technical report, Microsoft (2008)
Ye, Z., He, B., Huang, X., Lin, H.: Revisiting Rocchio’s Relevance Feedback Algorithm for Probabilistic Models. In: Cheng, P.-J., Kan, M.-Y., Lam, W., Nakov, P. (eds.) AIRS 2010. LNCS, vol. 6458, pp. 151–161. Springer, Heidelberg (2010)
Zhai, C., Lafferty, J.D.: Model-based feedback in the language modeling approach to information retrieval. In: CIKM, pp. 403–410 (2001)
Zheng, Z., Zha, H., Sun, G.: Query-level learning to rank using isotonic regression. In: Allerton, pp. 1108–1115 (2008)
Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: ICML, pp. 129–136 (2007)
Ounis, I., Macdonald, C., Lin, J., Soboroff, I.: Overview of the TREC 2011 microblog track. In: TREC, Gaithersburg, MD (2011)
OunIs, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A High Performance and Scalable Information Retrieval Platform. In: Proceedings of ACM SIGIR 2006 Workshop on Open Source Information Retrieval (OSIR), Seattle, Washington, USA, August 10 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cheng, F., Zhang, X., He, B., Luo, T., Wang, W. (2013). A Survey of Learning to Rank for Real-Time Twitter Search. In: Zu, Q., Hu, B., Elçi, A. (eds) Pervasive Computing and the Networked World. ICPCA/SWS 2012. Lecture Notes in Computer Science, vol 7719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37015-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-37015-1_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37014-4
Online ISBN: 978-3-642-37015-1
eBook Packages: Computer ScienceComputer Science (R0)