Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

Delayed-enhancement magnetic resonance imaging (DE-MRI) is an effective technique for imaging left ventricular (LV) infarct. Existing techniques for LV infarct segmentation are primarily threshold-based making them prone to high user variability. In this work, we propose a segmentation algorithm that can learn from training images and segment based on this training model. This is implemented as a Markov random field (MRF) based energy formulation solved using graph-cuts. A good agreement was found with the Full-Width-at-Half-Maximum (FWHM) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Flett, A., Hasleton, J., Cook, C., Hausenloy, D., Quarta, G., Ariti, C., Muthurangu, V., Moon, J.: Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovascular Imaging 4(2), 150 (2011)

    Article  Google Scholar 

  2. Amado, L., Gerber, B., Gupta, S., Rettmann, D., Szarf, G., Schock, R., Nasir, K., Kraitchman, D., Lima, J.: Accurate and objective infarct sizing by contrast- enhanced magnetic resonance imaging in a canine myocardial infarction model. Journal of the American College of Cardiology 44(12), 2383–2389 (2004)

    Article  Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1222–1239 (2001)

    Google Scholar 

  4. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)

    Article  Google Scholar 

  5. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (TOG) 23, 309–314 (2004)

    Article  Google Scholar 

  6. Song, Z., Tustison, N., Avants, B., Gee, J.C.: Integrated Graph Cuts for Brain MRI Segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 831–838. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. van der Lijn, F., den Heijer, T., Breteler, M., Niessen, W.: Hippocampus segmen- tation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage 43(4), 708–720 (2008)

    Article  Google Scholar 

  8. Boykov, Y.: University of western ontario vision group wiki page. Source code for implementation of the max-flow/min-cut problem (January 2010)

    Google Scholar 

  9. Dice, L.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karim, R. et al. (2013). Infarct Segmentation of the Left Ventricle Using Graph-Cuts. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36961-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36960-5

  • Online ISBN: 978-3-642-36961-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics