Nothing Special   »   [go: up one dir, main page]

Skip to main content

Noise and Illumination Invariant Road Detection Based on Vanishing Point

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

  • 2546 Accesses

Abstract

We propose a new method for robust road detection under noise and illumination varying conditions. Original input image is first divided into smooth and detailed component through structure-texture decomposition, where we verify the texture image is robust to various complicated road conditions. The texture image is then be used to compute each pixel’s dominant orientation through Gabor wavelet analysis, followed by generating the vanishing point via grouping voters, which has an orientation confidence larger than a fixed threshold, in corresponding voting region through soft voting. Finally the road borders are constructed by feature inconsistency maximization criterion. Experiments on various road, weather, noise and lighting conditions are justified the accuracy and robust of our method. Furthermore, we analyze the applicability of texture based vanishing point method and conclude the main factors that degenerate the performance of this class method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leonard, J., et al.: A Perception-Driven Autonomous Urban Vehicle. J. Field Robotics 25(10), 727–774 (2008)

    Article  Google Scholar 

  2. Urmson, C., et al.: Autonomous Driving in Urban Environments: Boss and the Urban Challenge, J. Field Robotics 25(8), 425–466 (2008)

    Article  Google Scholar 

  3. Montemerlo, M., et al.: Junior: The Stanford Entry in the Urban Challenge. J. Field Robotics 25(9), 569–597 (2008)

    Article  Google Scholar 

  4. Miller, I., Campbell, M., et al.: Team Cornell’s Skynet: Robust Perception and Planning in an Urban Environment. J. Field Robotics 25(8), 493–527 (2008)

    Article  Google Scholar 

  5. McCall, J.C., Trivedi, M.M.: Video-Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE TITS 7(1), 20–37 (2006)

    Google Scholar 

  6. Wang, Y., Teoh, E.K., Shen, D.: Lane detection and tracking using B-Snake. Image Vision Computing 22, 269–280 (2004)

    Article  Google Scholar 

  7. Caraffi, C., Cattani, S., Grisleri, P.: Off-Road Path and Obstacle Detection Using Decision Networks and Stereo Vision. IEEE TITS 8(4), 607–618 (2007)

    Google Scholar 

  8. Bertozzi, M., et al.: Artificial Vision in Road Vehicles. Proceedings of the IEEE 90(7), 1258–1269 (2002)

    Article  Google Scholar 

  9. Kastrinake, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image and Vision Computing 21, 359–381 (2003)

    Article  Google Scholar 

  10. Rasmussen, C.: Grouping Dominant Orientations for Ill-Structured Road Following. In: CVPR (2004)

    Google Scholar 

  11. Kong, H., Audibert, J.-Y., Ponce, J.: General Road Detection From a Single Image. IEEE TIP 19(8), 2211–2220 (2010)

    MathSciNet  Google Scholar 

  12. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An Improved Algorithm for TV-L1 Optical Flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Sun, D., Roth, S., Black, M.J.: Secrets of Optical Flow Estimation and Their Pricinples. In: CVPR (2010)

    Google Scholar 

  14. Se, S.: Zebra-crossing Detection for the Partially Sighted. In: CVPR, vol. 2, pp. 211–217 (2000)

    Google Scholar 

  15. Simond, N., Rives, P.: Homography from a Vanishing Point in Urban Scenes. In: International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 1005–1010 (2003)

    Google Scholar 

  16. Coughlan, J.M., Yuille, A.L.: Manhattan World: Orientation and Outlier Detection by Bayesian Inference. Neural Computation 15(5), 1063–1088 (2003)

    Article  Google Scholar 

  17. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  18. Chambolle, A.: Total Variation Minimization and a Class of Binary MRF Models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2003)

    Google Scholar 

  20. Lee, T.: Image representation using 2d gabor wavelets. IEEE TPAMI 18(10), 959–971 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, W., Chang, H., Yang, J. (2013). Noise and Illumination Invariant Road Detection Based on Vanishing Point. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics