Nothing Special   »   [go: up one dir, main page]

Skip to main content

Autoencoder for Polysemous Word

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

Abstract

Instead of training a single code vector for a word by using Elman network [1], this work presents a method to train multi-code for the polysemous word where each code represents a different meaning of the word. These multiple codes can accommodate different meanings of a word and facilitate the operation of word-sense disambiguation in semantic space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liou, C.-Y., Huang, J.-C., Yang, W.-C.: Modeling word perception using the Elman network. Neurocomputing 71, 3150–3157 (2008)

    Article  Google Scholar 

  2. Elman, J.L.: Finding structure in time. Cognitive Sci. 14, 179–211 (1990)

    Article  Google Scholar 

  3. Huang, J.-C., Cheng, W.-C., Liou, C.-Y.: Distributed Representation of Word. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part I. LNCS (LNAI), vol. 6591, pp. 169–176. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Navigli, R.: Word sense disambiguation:a survey. ACM Comput. Surv. 41(2), 1–69 (2009)

    Article  Google Scholar 

  5. Rumelhart, D.E.: Parallel distributed processing: Explorations. In: McClelland, J.L. (ed.) The Microstructure of Cognition: Foundations. MIT Press, Cambridge (1986)

    Google Scholar 

  6. Lowe, W.: Towards a theory of semantic space. In: Proceedings of the 23rd Annual Conference of the Cognitive Science Society, Edinburgh, UK, pp. 576–581 (2001)

    Google Scholar 

  7. Grefenstette, G.: Explorations in Automatic Thesaurus Discovery. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liou, CY., Cheng, CW., Liou, JW., Liou, DR. (2013). Autoencoder for Polysemous Word. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics