Abstract
This paper presents a frequency-degree mapping algorithm which enables network analysis of human electrocardiogram (ECG) time series. Two important topological quantities, the average degree (AD) and the average shortest path length (APL) have been investigated in the associated networks of ECG time series. The results demonstrate that the quantity of AD can serve as an effective and reliable indicator in distinguishing malignant ventricular arrhythmias from normal sinus rhythm and other benignant arrhythmias. Meanwhile, the quantity of APL is shown to be capable of characterizing the heart rate, which may be helpful in detecting shockable rhythms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small world’ networks. Nature 393, 440–442 (1998)
Barabási, A., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 426, 175–308 (2006)
Wang, X.F., Chen, G.Y.: Complex Networks: Small-World, Scale-Free and Beyond. IEEE Circ. Syst. Mag. 3, 6–20 (2003)
Li, X., Wang, X.F., Chen, G.Y.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. I. 51, 2074–2087 (2004)
Zhang, J., Small, M.: Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96, 238701 (2006)
Zhang, J., Sun, J., Luo, X., Zhang, K., Nakamura, T., Small, M.: Characterizing pseudoperiodic time series through the complex network approach. Physica D 237, 2856–2865 (2008)
Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. U.S.A. 105, 4972–4975 (2008)
Xu, X.K., Zhang, J., Small, M.: Superfamily phenomena and motifs of networks induced from time series. Proc. Natl. Acad. Sci. U.S.A. 105, 19601–19605 (2008)
Marwan, N., Donges, J.F., Zou, Y., Donner, R.V., Kurths, J.: Complex network approach for recurrence analysis of time series. Phys. Lett. A. 373, 4246–4254 (2009)
Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.: Recurrence networks - a novel paradigm for nonlinear time series analysis. New J. Phys. 12, 33025 (2010)
Marwan, N., Wessel, N., Stepan, H., Kurths, J.: Recurrence based complex network analysis of cardiovascular variability data to predict pre-eclampsia. In: Proc. Biosignal, Berlin, Germany (July 2010)
Donner, R.V., Small, M., Donges, J.F., Marwan, M., Zou, Y., Xiang, R.X., Kurths, M.: Recurrence based time series analysis by means of complex network methods. Int. J. Bifurcat. Chaos 21, 1019–1046 (2011)
Yang, D., Li, X.: Bridge time series and complex networks with a frequency-degree mapping algorithm. In: IEEE International Symposium on Circuits and Systems, Seoul, Korea, pp. 910–913 (May 2012)
Elsner, J., Jagger, T.H., Fogarty, E.A.: Visibility network of United States hurricanes. Geophys. Res. Lett. 36, L16702 (2009)
Yang, Y., Wang, J., Yang, H., Ming, J.: Visibility graph approach to exchange rate series. Physica A 388, 44431 (2009)
Shao, Z.G.: Network analysis of human heartbeat dynamics. Appl. Phys. Lett. 96, 073703 (2010)
Dong, Z., Li, X.: Comment on“Network analysis of human heartbeat dynamics. Appl. Phys. Lett. 96, 266101 (2010)
Li, X., Dong, Z.: Detection and prediction of the onset of human ventricular fibrillation: An approach based on complex network theory. Phyc. Rev. E. 84, 062901 (2011)
Thakor, N.V., Zhu, Y.S., Pan, K.Y.: Ventricular Tachycaridia and Fibrillation Detection by a Sequential Hypothesis Testing Algorithm. IEEE Trans. BioMed. Eng. 37, 837–843 (1990)
Zhang, X.S., Zhu, Y.S., Thakor, N.V., Wang, Z.Z.: Detecting Ventricular Tachycardia and Fibrillation by Complexity Measure. IEEE Trans. BioMed. Eng. 46, 548–555 (1999)
Amann, A., Tratnig, R., Unterkofler, K.: Detecting Ventricular Fibrillation by Time-Delay Methods. IEEE Trans. Biomed. Eng. 54, 174–177 (2007)
Didon, J., Dotsinsky, I., Jekova, I., Krasteva, V.: Detection of Shockable and Non-Shockable Rhythms in Presence of CPR Artifacts by Time-Frequency ECG Analysis. Computers in Cardiology 36, 629–634 (2009)
Anas, E.M., Lee, S.Y., Hasan, M.K.: Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. BioMedical Engineering (2010), http://www.biomedical-engineering-online.com/content/9/1/43
Kerber, R., Becker, L., Bourland, J.: Automatic external defibrillators for public access defibrillation: Recommendations for specifying and reporting arrhythmia analysis, algorithm, performance, incorporating new waveforms and enhancing safety. Circulation 95, 1677–1682 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, D., Li, X. (2013). Reliable Detection of Malignant Ventricular Arrhythmias Based on Complex Network Theory. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-36669-7_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36668-0
Online ISBN: 978-3-642-36669-7
eBook Packages: Computer ScienceComputer Science (R0)