Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reliable Detection of Malignant Ventricular Arrhythmias Based on Complex Network Theory

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

  • 2478 Accesses

Abstract

This paper presents a frequency-degree mapping algorithm which enables network analysis of human electrocardiogram (ECG) time series. Two important topological quantities, the average degree (AD) and the average shortest path length (APL) have been investigated in the associated networks of ECG time series. The results demonstrate that the quantity of AD can serve as an effective and reliable indicator in distinguishing malignant ventricular arrhythmias from normal sinus rhythm and other benignant arrhythmias. Meanwhile, the quantity of APL is shown to be capable of characterizing the heart rate, which may be helpful in detecting shockable rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  2. Barabási, A., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 426, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  5. Wang, X.F., Chen, G.Y.: Complex Networks: Small-World, Scale-Free and Beyond. IEEE Circ. Syst. Mag. 3, 6–20 (2003)

    Article  Google Scholar 

  6. Li, X., Wang, X.F., Chen, G.Y.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. I. 51, 2074–2087 (2004)

    Article  MathSciNet  Google Scholar 

  7. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96, 238701 (2006)

    Article  Google Scholar 

  8. Zhang, J., Sun, J., Luo, X., Zhang, K., Nakamura, T., Small, M.: Characterizing pseudoperiodic time series through the complex network approach. Physica D 237, 2856–2865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. U.S.A. 105, 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu, X.K., Zhang, J., Small, M.: Superfamily phenomena and motifs of networks induced from time series. Proc. Natl. Acad. Sci. U.S.A. 105, 19601–19605 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marwan, N., Donges, J.F., Zou, Y., Donner, R.V., Kurths, J.: Complex network approach for recurrence analysis of time series. Phys. Lett. A. 373, 4246–4254 (2009)

    Article  MATH  Google Scholar 

  12. Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.: Recurrence networks - a novel paradigm for nonlinear time series analysis. New J. Phys. 12, 33025 (2010)

    Article  Google Scholar 

  13. Marwan, N., Wessel, N., Stepan, H., Kurths, J.: Recurrence based complex network analysis of cardiovascular variability data to predict pre-eclampsia. In: Proc. Biosignal, Berlin, Germany (July 2010)

    Google Scholar 

  14. Donner, R.V., Small, M., Donges, J.F., Marwan, M., Zou, Y., Xiang, R.X., Kurths, M.: Recurrence based time series analysis by means of complex network methods. Int. J. Bifurcat. Chaos 21, 1019–1046 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, D., Li, X.: Bridge time series and complex networks with a frequency-degree mapping algorithm. In: IEEE International Symposium on Circuits and Systems, Seoul, Korea, pp. 910–913 (May 2012)

    Google Scholar 

  16. Elsner, J., Jagger, T.H., Fogarty, E.A.: Visibility network of United States hurricanes. Geophys. Res. Lett. 36, L16702 (2009)

    Google Scholar 

  17. Yang, Y., Wang, J., Yang, H., Ming, J.: Visibility graph approach to exchange rate series. Physica A 388, 44431 (2009)

    Google Scholar 

  18. Shao, Z.G.: Network analysis of human heartbeat dynamics. Appl. Phys. Lett. 96, 073703 (2010)

    Article  Google Scholar 

  19. Dong, Z., Li, X.: Comment on“Network analysis of human heartbeat dynamics. Appl. Phys. Lett. 96, 266101 (2010)

    Article  Google Scholar 

  20. Li, X., Dong, Z.: Detection and prediction of the onset of human ventricular fibrillation: An approach based on complex network theory. Phyc. Rev. E. 84, 062901 (2011)

    Article  Google Scholar 

  21. Thakor, N.V., Zhu, Y.S., Pan, K.Y.: Ventricular Tachycaridia and Fibrillation Detection by a Sequential Hypothesis Testing Algorithm. IEEE Trans. BioMed. Eng. 37, 837–843 (1990)

    Article  Google Scholar 

  22. Zhang, X.S., Zhu, Y.S., Thakor, N.V., Wang, Z.Z.: Detecting Ventricular Tachycardia and Fibrillation by Complexity Measure. IEEE Trans. BioMed. Eng. 46, 548–555 (1999)

    Article  Google Scholar 

  23. Amann, A., Tratnig, R., Unterkofler, K.: Detecting Ventricular Fibrillation by Time-Delay Methods. IEEE Trans. Biomed. Eng. 54, 174–177 (2007)

    Article  Google Scholar 

  24. Didon, J., Dotsinsky, I., Jekova, I., Krasteva, V.: Detection of Shockable and Non-Shockable Rhythms in Presence of CPR Artifacts by Time-Frequency ECG Analysis. Computers in Cardiology 36, 629–634 (2009)

    Google Scholar 

  25. Anas, E.M., Lee, S.Y., Hasan, M.K.: Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. BioMedical Engineering (2010), http://www.biomedical-engineering-online.com/content/9/1/43

  26. http://www.physionet.org/cgi-bin/atm/ATM.

  27. http://homepages.fhv.at/ku/karl/VF/filtering.m.

  28. Kerber, R., Becker, L., Bourland, J.: Automatic external defibrillators for public access defibrillation: Recommendations for specifying and reporting arrhythmia analysis, algorithm, performance, incorporating new waveforms and enhancing safety. Circulation 95, 1677–1682 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, D., Li, X. (2013). Reliable Detection of Malignant Ventricular Arrhythmias Based on Complex Network Theory. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics