Abstract
Relational learning refers to learning from data that have a complex structure. This structure may be either internal (a data instance may itself have a complex structure) or external (relationships between this instance and other data elements). Statistical relational learning refers to the use of statistical learning methods in a relational learning context, and the challenges involved in that. In this chapter we give an overview of statistical relational learning. We start with some motivating problems, and continue with a general description of the task of (statistical) relational learning and some of its more concrete forms (learning from graphs, learning from logical interpretations, learning from relational databases). Next, we discuss a number of approaches to relational learning, starting with symbolic (non-probabilistic) approaches, and moving on to numerical and probabilistic methods. Methods discussed include inductive logic programming, relational neural networks, and probabilistic logical or relational models
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blockeel, H., Bruynooghe, M.: Aggregation versus selection bias, and relational neural networks. In: IJCAI 2003 Workshop on Learning Statistical Models from Relational Data, SRL 2003, Acapulco, Mexico, August 11 (2003)
Bratko, I.: Prolog Programming for Artificial Intelligence. Addison-Wesley (1986)
Bruynooghe, M., De Cat, B., Drijkoningen, J., Fierens, D., Goos, J., Gutmann, B., Kimmig, A., Labeeuw, W., Langenaken, S., Landwehr, N., Meert, W., Nuyts, E., Pellegrims, R., Rymenants, R., Segers, S., Thon, I., Van Eyck, J., Van den Broeck, G., Vangansewinkel, T., Van Hove, L., Vennekens, J., Weytjens, T., De Raedt, L.: An exercise with statistical relational learning systems. In: Proceedings of the 6th International Workshop on Statistical Relational Learning (2009)
Bruynooghe, M., Mantadelis, T., Kimmig, A., Gutmann, B., Vennekens, J., Janssens, G., De Raedt, L.: Problog technology for inference in a probabilistic first order logic. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 719–724. IOS Press (2010)
Buntine, W.: Operations for learning with graphical models. Journal of Artificial Intelligence Research 2, 159–225 (1994)
Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length and background knowledge. J. Artif. Intell. Res. (JAIR) 1, 231–255 (1994)
Cook, D.J., Holder, L.B.: Mining Graph Data. Wiley (2007)
d’Avila Garcez, A.S., Zaverucha, G.: The connectionist inductive learning and logic programming system. Appl. Intell. 11(1), 59–77 (1999)
De Raedt, L.: Logical settings for concept learning. Artificial Intelligence 95, 187–201 (1997)
De Raedt, L.: Logical and Relational Learning. Springer (2008)
De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26, 99–146 (1997)
De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146 (1997)
De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A., Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, I., Vennekens, J.: Towards digesting the alphabet-soup of statistical relational learning. In: Proceedings of the NIPS*2008 Workshop Probabilistic Programming, pp. 1–3 (2008)
De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.): Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)
De Raedt, L., Kersting, K.: Probabilistic logic learning. SIGKDD Explorations 5(1), 31–48 (2003)
Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining and Knowledge Discovery 3(1), 7–36 (1999)
Džeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Mach. Learn. 43, 7–52 (2001)
Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer (2001)
Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical bayesian networks and their relation to other probabilistic logical models. In: Kramer, Pfahringer [38], pp. 121–135
Fierens, D., Ramon, J., Bruynooghe, M., Blockeel, H.: Learning Directed Probabilistic Logical Models: Ordering-Search Versus Structure-Search. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 567–574. Springer, Heidelberg (2007)
Finn, P., Muggleton, S., Page, D., Srinivasan, A.: Pharmacophore discovery using the inductive logic programming system Progol. Mach. Learn. 30, 241–270 (1998)
Flach, P.A., Lachiche, N.: Naive bayesian classification of structured data. Machine Learning 57(3), 233–269 (2004)
Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Dean, T. (ed.) IJCAI, pp. 1300–1309. Morgan Kaufmann (1999)
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press (2007)
Gilks, W.R., Thomas, A., Spiegelhalter, D.J.: A language and program for complex bayesian modelling. The Statistician 43, 169–178 (1994)
Haddawy, P.: Generating bayesian networks from probablity logic knowledge bases. In: de Mántaras, R.L., Poole, D. (eds.) UAI, pp. 262–269. Morgan Kaufmann (1994)
Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)
Heckerman, D., Meek, C., Koller, D.: Probabilistic entity-relationship models, prms, and plate models. In: Introduction to Statistical Relational Learning, pp. 201–238. MIT Press (2007)
Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar graphs. In: Proc. of the 12th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pp. 197–206 (2006)
Jaeger, M.: Relational bayesian networks. In: UAI 1997: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, Brown University, Providence, Rhode Island, USA, August 1-3, pp. 266–273. Morgan Kaufmann (1997)
Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias in relational learning. In: Proc. of the 19th Int’l Conf. on Machine Learning, pp. 259–266 (2002)
Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: Proc. of the 10th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pp. 593–598 (2004)
Karalič, A., Bratko, I.: First order regression. Machine Learning 26, 147–176 (1997)
Kersting, K.: An Inductive Logic Programming Approach to Statistical Relational Learning. IOS Press (2006)
Kersting, K., Dick, U.: Balios – The Engine for Bayesian Logic Programs. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 549–551. Springer, Heidelberg (2004)
Kimmig, A., De Raedt, L.: Local query mining in a probabilistic prolog. In: Boutilier, C. (ed.) IJCAI, pp. 1095–1100 (2009)
Koller, D., Friedman, N., Getoor, L., Taskar, B.: Graphical models in a nutshell. In: Introduction to Statistical Relational Learning, pp. 13–55. MIT Press (2007)
Kramer, S., Pfahringer, B. (eds.): ILP 2005. LNCS (LNAI), vol. 3625. Springer, Heidelberg (2005)
Krogel, M.-A., Rawles, S., Železný, F., Flach, P.A., Lavrač, N., Wrobel, S.: Comparative Evaluation of Approaches to Propositionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 197–214. Springer, Heidelberg (2003)
Krogel, M.-A., Wrobel, S.: Transformation-Based Learning Using Multirelational Aggregation. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 142–155. Springer, Heidelberg (2001)
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Brodley, C.E., Danyluk, A.P. (eds.) ICML, pp. 282–289. Morgan Kaufmann (2001)
Lloyd, J.W.: Logic for Learning. Springer (2003)
Meert, W., Struyf, J., Blockeel, H.: Learning ground CP-Logic theories by leveraging bayesian network learning techniques. Fundam. Inform. 89(1), 131–160 (2008)
Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: Blog: Probabilistic models with unknown objects. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 1352–1359. Professional Book Center (2005)
Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming 13(3-4), 245–286 (1995)
Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 254–264. IOS Press (1996)
Nijssen, S., Kok, J.N.: The gaston tool for frequent subgraph mining. Electr. Notes Theor. Comput. Sci. 127(1), 77–87 (2005)
Perlich, C., Provost, F.J.: Aggregation-based feature invention and relational concept classes. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) KDD, pp. 167–176. ACM (2003)
Pfeffer, A.: The design and implementation of ibal: A general-purpose probabilistic programming language. Technical Report TR-12-05, Harvard University (2005)
Poole, D.: First-order probabilistic inference. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 985–991. Morgan Kaufmann (2003)
Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)
Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1-2), 107–136 (2006)
Santos Costa, V., Page, D., Qazi, M., Cussens, J.: Clp(bn): Constraint logic programming for probabilistic knowledge. In: Meek, C., Kjærulff, U. (eds.) UAI, pp. 517–524. Morgan Kaufmann (2003)
Sato, T., Kameya, Y.: PRISM: A symbolic-statistical modeling language. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 1330–1335 (1997)
Spiegelhalter, D.J.: Bayesian graphical modelling: a case-study in monitoring health outcomes. Applied Statistics 47, 115–134 (1998)
Struyf, J., Blockeel, H.: Relational learning. In: Sammut, C., Webb, G. (eds.) Encyclopedia of Machine Learning, pp. 851–857. Springer (2010)
Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An overview. In: Proc. of the ICML 2004 Wshp. on Relational Reinforcement Learning, pp. 1–9 (2004)
Taghipour, N., Fierens, D., Blockeel, H.: Probabilistic logical learning for biclustering: A case study with surprising results. CW Reports CW597, Department of Computer Science, K.U.Leuven (October 2010)
Thon, I., Landwehr, N., De Raedt, L.: A Simple Model for Sequences of Relational State Descriptions. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 506–521. Springer, Heidelberg (2008)
Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif. Intell. 70(1-2), 119–165 (1994)
Uwents, W.: Learning complex aggregate features with relational neural networks. PhD thesis, Katholieke Universiteit Leuven (2011) (forthcoming)
Uwents, W., Blockeel, H.: Classifying relational data with neural networks. In: Kramer, Pfahringer [38], pp. 384–396
Uwents, W., Blockeel, H.: A Comparison between Neural Network Methods for Learning Aggregate Functions. In: Boulicaut, J.-F., Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 88–99. Springer, Heidelberg (2008)
Uwents, W., Blockeel, H.: Learning Aggregate Functions with Neural Networks Using a Cascade-Correlation Approach. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 315–329. Springer, Heidelberg (2008)
Uwents, W., Monfardini, G., Blockeel, H., Gori, M., Scarselli, F.: Neural networks for relational learning: An experimental comparison. Machine Learning 82, 315–349 (2011)
Van Assche, A., Vens, C., Blockeel, H., Džeroski, S.: First order random forests: Learning relational classifiers with complex aggregates. Machine Learning 64(1-3), 149–182 (2006)
Vennekens, J., Denecker, M., Bruynooghe, M.: Cp-logic: A language of causal probabilistic events and its relation to logic programming. TPLP 9(3), 245–308 (2009)
Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs with Annotated Disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004)
Vens, C., Ramon, J., Blockeel, H.: Refining Aggregate Conditions in Relational Learning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 383–394. Springer, Heidelberg (2006)
Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD Explorations 5(1), 59–68 (2003)
Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: ICDM, pp. 721–724. IEEE Computer Society (2002)
Yin, X., Han, J., Yang, J., Yu, P.S.: Efficient classification across multiple database relations: A CrossMine approach. IEEE Trans. Knowl. Data Eng. 18(6), 770–783 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Blockeel, H. (2013). Statistical Relational Learning. In: Bianchini, M., Maggini, M., Jain, L. (eds) Handbook on Neural Information Processing. Intelligent Systems Reference Library, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36657-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-36657-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36656-7
Online ISBN: 978-3-642-36657-4
eBook Packages: EngineeringEngineering (R0)