Abstract
We introduce Signatures of Correct Computation (SCC), a new model for verifying dynamic computations in cloud settings. In the SCC model, a trusted source outsources a function f to an untrusted server, along with a public key for that function (to be used during verification). The server can then produce a succinct signature σ vouching for the correctness of the computation of f, i.e., that some result v is indeed the correct outcome of the function f evaluated on some point a. There are two crucial performance properties that we want to guarantee in an SCC construction: (1) verifying the signature should take asymptotically less time than evaluating the function f; and (2) the public key should be efficiently updated whenever the function changes.
We construct SCC schemes (satisfying the above two properties) supporting expressive manipulations over multivariate polynomials, such as polynomial evaluation and differentiation. Our constructions are adaptively secure in the random oracle model and achieve optimal updates, i.e., the function’s public key can be updated in time proportional to the number of updated coefficients, without performing a linear-time computation (in the size of the polynomial).
We also show that signatures of correct computation imply Publicly Verifiable Computation (PVC), a model recently introduced in several concurrent and independent works. Roughly speaking, in the SCC model, any client can verify the signature σ and be convinced of some computation result, whereas in the PVC model only the client that issued a query (or anyone who trusts this client) can verify that the server returned a valid signature (proof) for the answer to the query. Our techniques can be readily adapted to construct PVC schemes with adaptive security, efficient updates and without the random oracle model.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)
Atallah, M.J., Cho, Y., Kundu, A.: Efficient data authentication in an environment of untrusted third-party distributors. In: ICDE, pp. 696–704 (2008)
Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS, pp. 326–349 (2012)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for snarks and proof-carrying data. IACR Cryptology ePrint Archive 2012:95 (2012)
Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)
Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random oracles. J. Cryptology 24(4), 659–693 (2011)
Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)
Canetti, R., Riva, B., Rothblum, G.N.: Two 1-round protocols for delegation of computation. IACR Cryptology ePrint Archive 2011:518 (2011)
Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation Using Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)
Damgård, I.B.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)
Fiore, D., Gennaro, R.: Improved publicly verifiable delegation of large polynomials and matrix computations. IACR Cryptology ePrint Archive 2012:434 (2012)
Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: CCS, pp. 501–512 (2012)
Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. IACR Cryptology ePrint Archive 2012:215 (2012)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108 (2011)
Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated dictionary with skip lists and commutative hashing. In: DISCEX II, pp. 68–82 (2001)
Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Super-Efficient Verification of Dynamic Outsourced Databases. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 407–424. Springer, Heidelberg (2008)
Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Efficient authenticated data structures for graph connectivity and geometric search problems. Algorithmica 60(3), 505–552 (2011)
Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute Based Encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008)
Groth, J.: Short Non-interactive Zero-Knowledge Proofs. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (2010)
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Polynomials and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010)
Lewko, A., Waters, B.: New Proof Methods for Attribute-Based Encryption: Achieving Full Security through Selective Techniques. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)
Yiu, M.L., Lin, Y., Mouratidis, K.: Efficient verification of shortest path search via authenticated hints. In: ICDE, pp. 237–248 (2010)
Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)
Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)
Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. IACR Cryptology ePrint Archive 2011: 587 (2011)
Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In: CCS, pp. 437–448 (2008)
Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal Verification of Operations on Dynamic Sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer, Heidelberg (2011)
Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)
Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
Tamassia, R.: Authenticated Data Structures. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)
Tamassia, R., Triandopoulos, N.: Efficient Content Authentication in Peer-to-Peer Networks. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 354–372. Springer, Heidelberg (2007)
Tamassia, R., Triandopoulos, N.: Certification and authentication of data structures. In: Proc. Alberto Mendelzon Workshop on Foundations of Data Management (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 International Association for Cryptologic Research
About this paper
Cite this paper
Papamanthou, C., Shi, E., Tamassia, R. (2013). Signatures of Correct Computation. In: Sahai, A. (eds) Theory of Cryptography. TCC 2013. Lecture Notes in Computer Science, vol 7785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36594-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-36594-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36593-5
Online ISBN: 978-3-642-36594-2
eBook Packages: Computer ScienceComputer Science (R0)