Nothing Special   »   [go: up one dir, main page]

Skip to main content

Faster Pairing Coprocessor Architecture

  • Conference paper
Pairing-Based Cryptography – Pairing 2012 (Pairing 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7708))

Included in the following conference series:

Abstract

In this paper, we present a high-speed pairing coprocessor using Residue Number System (RNS) which is intrinsically suitable for parallel computation. This work improves the design of Cheung et al. [11] using a carefully selected RNS base and an optimized pipeline design of the modular multiplier. As a result, the cycle count for a modular reduction has been halved. When combining with the lazy reduction, Karatsuba-like formulas and optimal pipeline scheduling, a 128-bit optimal ate pairing computation can be completed in less than 100,000 cycles. We prototype the design on a Xilinx Virtex-6 FPGA using 5237 slices and 64 DSPs; a 128-bit pairing is computed in 0.358 ms running at 230MHz. To the best of our knowledge, this implementation outperforms all reported hardware and software designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aranha, D., Beuchat, J.L., Detrey, J., Estibals, N.: Optimal eta pairing on supersingular genus-2 binary hyperelliptic curves. Cryptology ePrint Archive, Report 2010/559 (2010), http://eprint.iacr.org/

  2. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster Explicit Formulas for Computing Pairings over Ordinary Curves. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Aranha, D.F., López, J., Hankerson, D.: High-Speed Parallel Software Implementation of the η T Pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 89–105. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bajard, J.C., Kaihara, M., Plantard, T.: Selected RNS bases for modular multiplication. In: ARITH 2009: Proceedings of the 2009 19th IEEE Symposium on Computer Arithmetic, pp. 25–32. IEEE Computer Society, Washington, DC (2009)

    Chapter  Google Scholar 

  5. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Beuchat, J.-L., González-Díaz, J.E., Mitsunari, S., Okamoto, E., Rodríguez-Henríquez, F., Teruya, T.: High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Beuchat, J.-L., López-Trejo, E., Martínez-Ramos, L., Mitsunari, S., Rodríguez-Henríquez, F.: Multi-core Implementation of the Tate Pairing over Supersingular Elliptic Curves. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 413–432. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2003)

    Google Scholar 

  11. Cheung, R.C.C., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao, G.X.: FPGA Implementation of Pairings Using Residue Number System and Lazy Reduction. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 421–441. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Dutta, R., Barua, R., Sarkar, P.: Pairing-based cryptographic protocols: A survey. Cryptology ePrint Archive, Report 2004/064 (2004)

    Google Scholar 

  13. Estibals, N.: Compact Hardware for Computing the Tate Pairing over 128-Bit-Security Supersingular Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 397–416. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient hardware implementation of \(\mathbb{F}_p\)-arithmetic for pairing-friendly curves. IEEE Transactions on Computers 61(5), 676–685 (2012)

    Article  MathSciNet  Google Scholar 

  15. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology 23, 224–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: High Speed Flexible Pairing Cryptoprocessor on FPGA Platform. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 450–466. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Ghosh, S., Roychowdhury, D., Das, A.: High Speed Cryptoprocessor for η T Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Grabher, P., Großschädl, J., Page, D.: On Software Parallel Implementation of Cryptographic Pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 35–50. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Hankerson, D., Menezes, A., Scott, M.: Software Implementation of Pairings. Cryptology and Information Security Series, vol. 2, pp. 188–206. IOS Press (2009)

    Google Scholar 

  21. Hess, F., Smart, N., Vercauteren, F.: The Eta pairing revisited. IEEE Transactions on Information Theory 52(10), 4595–4602 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology 17, 263–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras, D., Ascheid, G., Mathar, R.: Designing an ASIP for Cryptographic Pairings over Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 254–271. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Kawamura, S.-I., Koike, M., Sano, F., Shimbo, A.: Cox-Rower Architecture for Fast Parallel Montgomery Multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 523–538. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  25. Koblitz, N.: Elliptic Curve Cryptosystem. Mathematics of Computation 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation on abelian varieties. IEEE Transactions on Information Theory 55(4), 1793–1803 (2009)

    Article  Google Scholar 

  27. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  28. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17, 235–261 (2004)

    Article  MATH  Google Scholar 

  29. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Naehrig, M., Niederhagen, R., Schwabe, P.: New Software Speed Records for Cryptographic Pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  31. Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press (2000)

    Google Scholar 

  32. Posch, K., Posch, R.: Base extension using a convolution sum in residue number systems. Computing 50, 93–104 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Posch, K., Posch, R.: Modulo reduction in residue number systems. IEEE Transactions on Parallel and Distributed Systems 6(5), 449–454 (1995)

    Article  MathSciNet  Google Scholar 

  34. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  35. Scott, M.: Implementing cryptographic pairings. In: Pairing-Based Cryptography - Pairing 2007. LNCS, vol. 4575, pp. 117–196. Springer (2007)

    Google Scholar 

  36. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 79–99. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  37. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1), 455–461 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, G.X., Fan, J., Cheung, R.C.C., Verbauwhede, I. (2013). Faster Pairing Coprocessor Architecture. In: Abdalla, M., Lange, T. (eds) Pairing-Based Cryptography – Pairing 2012. Pairing 2012. Lecture Notes in Computer Science, vol 7708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36334-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36334-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36333-7

  • Online ISBN: 978-3-642-36334-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics