Abstract
Operating at near-threshold voltage is an attractive solution for energy reduction in wireless sensor nodes, where throughput is often in the order of MBaud. The challenges at low supply voltages are timing or functional failures due to variability. A common mitigation technique is to apply cell pruning based on stack height or complexity. We present a new variability-aware methodology based on the static unity gain noise margin and its corresponding closed-form expression that enables cell selection and/or optimization for reliable low-voltage operation. Using a standard cell library in a 40nm low-power CMOS process as vehicle, the minimal supply voltage could be lowered by 70mV, or the library complexity increased without impacting reliability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wang, A., Calhoun, B.H., Chandrakasan, A.P.: Sub-Threshold Design for Ultra Low-Power Systems. Springer, New York (2006)
Wang, A., Chandrakasan, A.P.: A 180mV FFT Processor Using Subthreshold Circuit Techniques. In: ISSCC, pp. 292–293 (February 2004)
Kwong, J., et al.: A 65nm Sub-Vt Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC Converter. In: ISSCC, pp. 318–319 (February 2008)
Chen, G.K., et al.: Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells. In: ISSCC, pp. 288–289 (February 2010)
Jain, S., et al.: A 280mV-to-1.2V Wide-Operating-Range IA-32 Processor in 32nm CMOS. In: IEEE International Solid-State Circuits Conference (ISSCC), pp. 123–125 (February 2012)
Seok, M., et al.: A 0.27V 30MHz 17.7nJ/transform 1024-pt complex FFT core with super-pipelining. In: ISSCC, pp. 342–344 (February 2011)
Kwong, J., Chandrakasan, A.P.: Variation-Driven Device Sizing for Minimum Energy Sub-threshold Circuits. In: ISLPED, pp. 8–13 (October 2006)
Keane, J., et al.: Subthreshold Logical Effort: A Systematic Framework for Optimal Subthreshold Device Sizing. In: DAC, pp. 425–428 (June 2006)
Kim, T.H., Eom, H., Keane, J., Kim, C.: Utilizing Reverse Short Channel Effect for Optimal Subthreshold Circuit Design. In: ISLPED, pp. 127–130 (October 2006)
Liu, B., Ashouei, M., Huisken, J., Pineda de Gyvez, J.: Standard cell sizing for subthreshold operation. In: DAC, pp. 962–967 (2012)
Soeleman, H., Roy, K.: Robust Sub-Threshold Logic for Ultra-Low Power Operation. In: ISLPED, pp. 94–96 (August 1999)
Lotze, N., et al.: A 62mV 0.13m CMOS standard-cell-based design technique using Schmitt-trigger logic. In: ISSCC, pp. 340–342 (February 2011)
Alioto, M.: Understanding DC Behavior of Subthreshold CMOS Logic Through Closed-Form Analysis. TCAS I 57(7), 1597–1607 (2010)
Fuketa, H., et al.: A closed-form expression for estimating minimum operating voltage (VDDmin) of CMOS logic gates. In: DAC, pp. 984–989 (June 2011)
Pelgrom, M., Duinmaijer, A.: Matching properties of MOS transistors. In: ESSCIRC, pp. 327–330 (September 1988)
De, V., et al.: Techniques for Leakage Power Reduction. In: Chandrakasan, A., et al. (eds.) Design of High-Perf. Microprocessor Circ., pp. 46–62. IEEE Press (2001)
Glasser, L., et al.: Design and Analysis of VLSI Circuits. Addison-Wesley (1985)
Ono, G., Miyazaki, M.: Threshold-Voltage Balance for Minimum Supply Operation. JSSC 38(5), 830–833 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gemmeke, T., Ashouei, M., Noll, T.G. (2013). Noise Margin Based Library Optimization Considering Variability in Sub-threshold. In: Ayala, J.L., Shang, D., Yakovlev, A. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2012. Lecture Notes in Computer Science, vol 7606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36157-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-36157-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36156-2
Online ISBN: 978-3-642-36157-9
eBook Packages: Computer ScienceComputer Science (R0)