Abstract
We propose a model order reduction (MOR) approach for networks containing simple and complex components. Simple components are modeled by linear ODE (and/or DAE) systems, while complex components are modeled by nonlinear PDE (and/or PDAE) systems. These systems are coupled through the network topology using the Kirchhoff laws. As application we consider MOR for electrical networks, where semiconductors form the complex components which are modeled by the transient drift-diffusion equations (DDEs). We sketch how proper orthogonal decomposition (POD) combined with discrete empirical interpolation (DEIM) and passivity-preserving balanced truncation methods for electrical circuits (PABTEC) can be used to reduce the dimension of the model. Furthermore we investigate residual-based sampling to construct reduced order models which are valid over a certain parameter range.
Chapter PDF
Similar content being viewed by others
Keywords
AMS subject classifications
References
Anile, A., Mascali, G., Romano, V.: Mathematical problems in semiconductor physics. Lectures given at the C. I. M. E. summer school, Cetraro, Italy, July 15-22, 1998. Lecture Notes in Mathematics. Springer, Berlin (2003)
Bangerth, W., Hartmann, R., Kanschat, G.: deal.II — a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4) (2007)
Bodestedt, M., Tischendorf, C.: PDAE models of integrated circuits and index analysis. Math. Comput. Model. Dyn. Syst. 13(1), 1–17 (2007)
Brown, P., Hindmarsh, A., Petzold, A.: A description of DASPK: A solver for large-scale differential-algebraic systems. Tech. rep., Lawrence Livermore National Report UCRL (1992)
Chaturantabut, S., Sorensen, D.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)
Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications 20(3), 720–755 (1999)
Günther, M.: Partielle differential-algebraische Systeme in der numerischen Zeitbereichsanalyse elektrischer Schaltungen. VDI Fortschritts-Berichte, Reihe 20, Rechnerunterstützte Verfahren, vol. 343 (2001)
Günther, M., Feldmann, U., ter Maten, J.: Modelling and discretization of circuit problems. In: Schilders, W.H.A., et al. (eds.) Handbook of Numerical Analysis. Special volume: Numerical methods in electromagnetics, vol. XIII, pp. 523–629. Elsevier/North Holland, Amsterdam (2005)
Hinze, M., Kunkel, M.: Discrete empirical interpolation in pod model order reduction of drift-diffusion equations in electrical networks. In: SCEE Proceedings 2010, Toulouse (2010)
Hinze, M., Kunkel, M.: Residual based sampling in POD model order reduction of drift-diffusion equations in parametrized electrical networks. Z. Angew. Math. Mech. 92, 91–104 (2012)
Hinze, M., Kunkel, M., Steinbrecher, A., Stykel, T.: Model order reduction of coupled circuit-device systems. Int. J. Numer. Model. (2012), doi:10.1002/jnm.840
Ho, C., Ruehli, A., Brennan, P.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. 22, 504–509 (1975)
Patera, A., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0. Copyright MIT 2006–2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering (2007)
Petzold, L.R.: A description of DASSL: A differential/algebraic system solver. IMACS Trans. Scientific Computing 1, 65–68 (1993)
Salih, H., Steinbrecher, A., Stykel, T.: MATLAB Toolbox PABTEC - A users guide. Technical Report, Institut für Mathematik, Technische Universität Berlin, Germany (2011)
Selva Soto, M., Tischendorf, C.: Numerical analysis of DAEs from coupled circuit and semiconductor simulation. Appl. Numer. Math. 53(2-4), 471–488 (2005)
Steinbrecher, A., Stykel, T.: Model order reduction of nonlinear circuit equations. Technical Report 2011/02, Institut für Mathematik, Technische Universität Berlin, Germany (2011)
Stykel, T., Reis, T.: The PABTEC algorithm for passivity-preserving model reduction of circuit equations. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010), July 5-9. ELTE, Budapest (2010) (paper 363)
Tischendorf, C.: Coupled Systems of Differential Algebraic and Partial Differential Equations in Circuit and Device Simulation. Habilitation thesis, Humboldt-University of Berlin (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 IFIP International Federation for Information Processing
About this paper
Cite this paper
Hinze, M., Matthes, U. (2013). Model Order Reduction for Networks of ODE and PDE Systems. In: Hömberg, D., Tröltzsch, F. (eds) System Modeling and Optimization. CSMO 2011. IFIP Advances in Information and Communication Technology, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36062-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-36062-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36061-9
Online ISBN: 978-3-642-36062-6
eBook Packages: Computer ScienceComputer Science (R0)