Nothing Special   »   [go: up one dir, main page]

Skip to main content

Faster Replacement Paths Algorithm for Undirected, Positive Integer Weighted Graphs with Small Diameter

  • Conference paper
Combinatorial Algorithms (IWOCA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7643))

Included in the following conference series:

Abstract

We consider the replacement path problem for undirected graphs in case of edge failures. Given a 2-edge connected graph G(V,E), where n = |V| and m = |E|, for each edge e on the shortest s − t path of G, we are to report the shortest s − t path in G ∖ e. If d is the diameter of the graph, the proposed algorithm takes O(m + d 2) time.

For graphs where \(d = O(\sqrt{m})\), typically dense graphs, or graphs with small diameter we have a linear time solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algorithms based on finding all nearest smaller values. J. Algorithms 14, 344–370 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Deo, N.: Graph Theory with Applications to Engineering and Computer Science. Prentice-Hall (1974)

    Google Scholar 

  3. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: what is an edge worth? In: Proc. FOCS, pp. 252–259 (2001)

    Google Scholar 

  4. Hershberger, J., Suri, S.: Erratum to ”Vickrey Pricing and Shortest Paths: What is an Edge Worth? In: FOCS, p. 809 (2002)

    Google Scholar 

  5. Henzinger, M.R., Klein, P., Rao, D., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55, 3–33 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Malik, K., Mittal, A.K., Gupta, S.K.: The most vital arcs in the shortest path problem. Oper. Res. Letters 8, 223–227 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nardelli, E., Proietti, G., Widmayer, P.: Finding the most vital node of a shortest path. Theoretical Computer Science 296, 167–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital edge of a shortest path. Inf. Process. Lett. 79(2), 81–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tarjan, R.: Sensitivity Analysis of Minimum Spanning Trees and Shortest Path Trees. Information Processing Letters 14(1), 30–33 (1982)

    Article  MathSciNet  Google Scholar 

  10. Tarjan, R.: Applications of path compression on balanced trees. J. ACM 26, 690–715 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Thorup, M.: Floats, Integers, and Single Source Shortest Paths. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 14–24. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahadeokar, J., Saxena, S. (2012). Faster Replacement Paths Algorithm for Undirected, Positive Integer Weighted Graphs with Small Diameter. In: Arumugam, S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2012. Lecture Notes in Computer Science, vol 7643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35926-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35926-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35925-5

  • Online ISBN: 978-3-642-35926-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics