Nothing Special   »   [go: up one dir, main page]

Skip to main content

Flow Decompositions in External Memory

  • Conference paper
SOFSEM 2013: Theory and Practice of Computer Science (SOFSEM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7741))

Abstract

Let G = (V,E) be a digraph with disjoint sets of sources S ⊂ V and sinks T ⊂ V endowed with an ST flow f  : E → ℤ + . It is a well-known fact that f decomposes into a sum ∑  st f st of st flows f st between all pairs of sources s ∈ S and sinks t ∈ T. In the usual RAM model, such a decomposition can be found in \(O(E \log \frac{V^2}{E})\) time. The present paper concerns the complexity of this problem in the external memory model (introduced by Aggarwal and Vitter). The internal memory algorithm involves random memory access and thus becomes inefficient. We propose two novel methods. The first one requires \(O(Sort(E) \log \frac{V^2}{E})\) I/Os and the second one takes O(Sort(E) logU) expected I/Os (where U denotes the maximum value of f).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arge, L.: The Buffer Tree: A New Technique for Optimal I/O-Algorithms (Extended Abstract). In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 334–345. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  2. Aggarwal, A., Vitter, J.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)

    Article  MathSciNet  Google Scholar 

  3. Babenko, M.A., Karzanov, A.V.: Free multiflows in bidirected and skew-symmetric graphs. Discrete Appl. Math. 155(13), 1715–1730 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1995, pp. 139–149 (1995)

    Google Scholar 

  5. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. Journal of ACM 35(4), 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Meyer, U., Sanders, P., Sibeyn, J.F. (eds.): Algorithms for Memory Hierarchies. LNCS, vol. 2625. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  7. Tarjan, R.: Data structures and network algorithms. Society for Industrial and Applied Mathematics, Philadelphia (1983)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babenko, M. (2013). Flow Decompositions in External Memory. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds) SOFSEM 2013: Theory and Practice of Computer Science. SOFSEM 2013. Lecture Notes in Computer Science, vol 7741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35843-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35843-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35842-5

  • Online ISBN: 978-3-642-35843-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics