Abstract
Quality specified image retrieval is helpful to improve the user experiences in mobile searching and social media sharing. However, the model for evaluating the quality of the user generated images, which are popular in social media sharing, remains unexploited. In this paper, we propose a scheme for quality assessment on user generated image. The scheme is formed by four attribute dimensions, including intrinsic quality, favorability, relevancy and accessibility of images. Each of the dimensions is defined and modeled to pool a final quality score of a user generated image. The proposed scheme can reveal the quality of user generated image in comprehensive manner. Experimental results show that the scores obtained by our scheme have high correlation coefficients with the benchmark data. Therefore, our scheme is suitable for quality specified image retrieval on mobile applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ji, R., Duan, L., Chen, J., Yao, H., Yuan, J., Rui, Y., Gao, W.: Location discriminative vocabulary coding for mobile landmark search. International Journal of Computer Vision 96(3), 290–314 (2012)
Ji, R., Gao, Y., Zhong, B., Yao, H., Tian, Q.: Mining flickr landmarks by modeling reconstruction sparsity. ACM Transactions on Multimedia Computing, Communications, and Applications 7(1), 1–22 (2011)
Daugherty, T., Eastin, M.S., Bright, L.: Exploring consumer motivations for creating user-generated content. Journal of Interactive Advertising 8(2), 16–25 (2008)
Parfeni, L.: Flickr boasts 6 billion photo uploads. Technical report
Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.Y., Moon, S.: I tube, you tube, everybody tubes: Analyzing the world’s largest user generated content video system. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC 2007, pp. 1–14 (2007)
Gao, Y., Tang, J., Hong, R., Yan, S., Dai, Q., Zhang, N., Chua, T.: Camera constraint-free view-based 3D object retrieval. IEEE Transactions on Image Processing 21(4), 2269–2281 (2012)
Gao, Y., Wang, M., Zha, Z., Tian, Q., Dai, Q., Zhang, N.: Less is more: Efficient 3D object retrieval with query view selection. IEEE Transactions on Multimedia 11(5), 1007–1018 (2011)
Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3D object retrieval and recognition with hypergraph analysis. IEEE Transactions on Image Processing 21(9), 4290–4303 (2012)
Wang, M., Yang, K., Hua, X.S., Zhang, H.J.: Towards a relevant and diverse search of social images. IEEE Transactions on Multimedia 12(8), 829–842 (2010)
Wang, M., Hua, X.S.: Active learning in multimedia annotation and retrieval: A survey. ACM Trans. Intell. 2(2), 10:1–10:21 (2011)
Wang, M., Ni, B., Hua, X.S., Chua, T.S.: Assistive tagging: A survey of multimedia tagging with human-computer joint exploration. ACM Comput. Surv. 44(4), 25:1–25:24 (2012)
Shen, J., Pang, H., Wang, M., Yan, S.: Modeling concept dynamics for large scale music search. In: SIGIR, pp. 455–464 (2012)
Shen, J., Tao, D., Li, X.: Modality mixture projections for semantic video event detection. IEEE Trans. Circuits Syst. Video Techn. 18(11), 1587–1596 (2008)
Shen, J., Shepherd, J., Cui, B., Tan, K.L.: A novel framework for efficient automated singer identification in large music databases. ACM Trans. Inf. Syst. 27(3) (2009)
Zha, Z., Wang, M., Zheng, Y.T., Yang, Y., Hong, R., Chua, T.S.: Interactive video indexing with statistical active learning. IEEE Transaction on Multimedia 14(1), 17–27 (2012)
Zha, Z.J., Yang, L., Mei, T., Wang, M., Wang, Z., Chua, T.S., Hua, X.S.: Visual query suggestion: Towards capturing user intent in internet image search. ACM Transactions on Multimedia Computing, Communications and Applications 6(3) (2010)
Zha, Z.J., Yang, L., Mei, T., Wang, M., Wang, Z.: Visual query suggestion. In: ACM Conference on Multimedia, pp. 15–24 (2009)
Liu, Q., Yang, Y., Ji, R., Gao, Y., Yu, L.: Cross-view down/up-sampling method for multiview depth video coding. IEEE Signal Processing Letters 19(5), 295–298 (2012)
Yang, Y., Dai, Q.: Contourlet-based image quality assessment for synthesised virtual image. Electronics Letters 46(7), 492–494 (2010)
Wang, X., Yu, M., Yang, Y., Jiang, G.: Research on subjective stereoscopic image quality assessment. In: Proceedings of SPIE: Multimedia Content Access: Algorithms and Systems III (2009)
Tian, X., Yang, L., Wang, J., Wu, X., Hua, X.S.: Bayesian visual reranking. IEEE Transactions on Multimedia 13(4), 639–652 (2011)
Tian, X., Tao, D.: Visual reranking: From objectives to strategies. IEEE MultiMedia 18(3), 12–21 (2011)
Gao, Y., Wang, M., Zha, Z., Shen, J., Li, X., Wu, X.: Visual-textual joint relevance learning for tag-based social image search. IEEE Transactions on Image Processing (in press), doi:10.1109/TIP.2012.2202676
Schau, H.J., Gilly, M.C.: We are what we post? self presentation in personal web space. Journal of Comsumer Research 30(3), 385–404 (2003)
Erving, G.: The Presentation of Self in Everyday Life, pp. 17–25. The Overlook Press, New York (1959)
Wang, Z., Sheikh, H.R., Bovik, A.C.: Objective Video Quality Assessment, pp. 1041–1078. CRC Press (2003)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)
Wang, R.Y., Strong, D.M.: Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems 12(4), 5–33 (1996)
Leea, Y.W., Strongb, D.M., Kahnc, B.K., Wang, R.Y.: Aimq: a methodology for information quality assessment. Information & Management 40(2), 133–146 (2002)
Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer US (2011)
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)
Joshi, D., Datta, R., Fedorovskaya, E., Luong, Q.T., Wang, J., Li, J., Luo, J.: Aesthetics and emotions in images. IEEE Signal Processing Magazine 28(5), 94–115 (2011)
Wang, Z., Sheikh, H., Bovik, A.: No-reference perceptual quality assessment of jpeg compressed images. In: 2002 International Conference on Image Processing, vol. 1, pp. I–477 – I–480 (2002)
Sheikh, H., Sabir, M., Bovik, A.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing 15(11), 3440–3451 (2006)
Liu, B.: Opinion mining and sentiment analysis. In: Carey, M.J., Ceri, S. (eds.) Web Data Mining. Data-Centric Systems and Applications, pp. 459–526. Springer, Heidelberg (2011)
Methodology for the subjective assessment of the quality of television pictures. ITU-R BT.500-11 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, Q., Yang, Y., Wang, X., Cao, L. (2013). Quality Assessment on User Generated Image for Mobile Search Application. In: Li, S., et al. Advances in Multimedia Modeling. Lecture Notes in Computer Science, vol 7733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35728-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-35728-2_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35727-5
Online ISBN: 978-3-642-35728-2
eBook Packages: Computer ScienceComputer Science (R0)