Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quality Assessment on User Generated Image for Mobile Search Application

  • Conference paper
Advances in Multimedia Modeling

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7733))

Abstract

Quality specified image retrieval is helpful to improve the user experiences in mobile searching and social media sharing. However, the model for evaluating the quality of the user generated images, which are popular in social media sharing, remains unexploited. In this paper, we propose a scheme for quality assessment on user generated image. The scheme is formed by four attribute dimensions, including intrinsic quality, favorability, relevancy and accessibility of images. Each of the dimensions is defined and modeled to pool a final quality score of a user generated image. The proposed scheme can reveal the quality of user generated image in comprehensive manner. Experimental results show that the scores obtained by our scheme have high correlation coefficients with the benchmark data. Therefore, our scheme is suitable for quality specified image retrieval on mobile applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ji, R., Duan, L., Chen, J., Yao, H., Yuan, J., Rui, Y., Gao, W.: Location discriminative vocabulary coding for mobile landmark search. International Journal of Computer Vision 96(3), 290–314 (2012)

    Article  Google Scholar 

  2. Ji, R., Gao, Y., Zhong, B., Yao, H., Tian, Q.: Mining flickr landmarks by modeling reconstruction sparsity. ACM Transactions on Multimedia Computing, Communications, and Applications 7(1), 1–22 (2011)

    Article  Google Scholar 

  3. Daugherty, T., Eastin, M.S., Bright, L.: Exploring consumer motivations for creating user-generated content. Journal of Interactive Advertising 8(2), 16–25 (2008)

    Article  Google Scholar 

  4. Parfeni, L.: Flickr boasts 6 billion photo uploads. Technical report

    Google Scholar 

  5. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.Y., Moon, S.: I tube, you tube, everybody tubes: Analyzing the world’s largest user generated content video system. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC 2007, pp. 1–14 (2007)

    Google Scholar 

  6. Gao, Y., Tang, J., Hong, R., Yan, S., Dai, Q., Zhang, N., Chua, T.: Camera constraint-free view-based 3D object retrieval. IEEE Transactions on Image Processing 21(4), 2269–2281 (2012)

    Article  MathSciNet  Google Scholar 

  7. Gao, Y., Wang, M., Zha, Z., Tian, Q., Dai, Q., Zhang, N.: Less is more: Efficient 3D object retrieval with query view selection. IEEE Transactions on Multimedia 11(5), 1007–1018 (2011)

    Article  Google Scholar 

  8. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3D object retrieval and recognition with hypergraph analysis. IEEE Transactions on Image Processing 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  9. Wang, M., Yang, K., Hua, X.S., Zhang, H.J.: Towards a relevant and diverse search of social images. IEEE Transactions on Multimedia 12(8), 829–842 (2010)

    Article  Google Scholar 

  10. Wang, M., Hua, X.S.: Active learning in multimedia annotation and retrieval: A survey. ACM Trans. Intell. 2(2), 10:1–10:21 (2011)

    Article  Google Scholar 

  11. Wang, M., Ni, B., Hua, X.S., Chua, T.S.: Assistive tagging: A survey of multimedia tagging with human-computer joint exploration. ACM Comput. Surv. 44(4), 25:1–25:24 (2012)

    Article  Google Scholar 

  12. Shen, J., Pang, H., Wang, M., Yan, S.: Modeling concept dynamics for large scale music search. In: SIGIR, pp. 455–464 (2012)

    Google Scholar 

  13. Shen, J., Tao, D., Li, X.: Modality mixture projections for semantic video event detection. IEEE Trans. Circuits Syst. Video Techn. 18(11), 1587–1596 (2008)

    Article  Google Scholar 

  14. Shen, J., Shepherd, J., Cui, B., Tan, K.L.: A novel framework for efficient automated singer identification in large music databases. ACM Trans. Inf. Syst. 27(3) (2009)

    Article  Google Scholar 

  15. Zha, Z., Wang, M., Zheng, Y.T., Yang, Y., Hong, R., Chua, T.S.: Interactive video indexing with statistical active learning. IEEE Transaction on Multimedia 14(1), 17–27 (2012)

    Article  Google Scholar 

  16. Zha, Z.J., Yang, L., Mei, T., Wang, M., Wang, Z., Chua, T.S., Hua, X.S.: Visual query suggestion: Towards capturing user intent in internet image search. ACM Transactions on Multimedia Computing, Communications and Applications 6(3) (2010)

    Article  Google Scholar 

  17. Zha, Z.J., Yang, L., Mei, T., Wang, M., Wang, Z.: Visual query suggestion. In: ACM Conference on Multimedia, pp. 15–24 (2009)

    Google Scholar 

  18. Liu, Q., Yang, Y., Ji, R., Gao, Y., Yu, L.: Cross-view down/up-sampling method for multiview depth video coding. IEEE Signal Processing Letters 19(5), 295–298 (2012)

    Article  Google Scholar 

  19. Yang, Y., Dai, Q.: Contourlet-based image quality assessment for synthesised virtual image. Electronics Letters 46(7), 492–494 (2010)

    Article  Google Scholar 

  20. Wang, X., Yu, M., Yang, Y., Jiang, G.: Research on subjective stereoscopic image quality assessment. In: Proceedings of SPIE: Multimedia Content Access: Algorithms and Systems III (2009)

    Google Scholar 

  21. Tian, X., Yang, L., Wang, J., Wu, X., Hua, X.S.: Bayesian visual reranking. IEEE Transactions on Multimedia 13(4), 639–652 (2011)

    Article  Google Scholar 

  22. Tian, X., Tao, D.: Visual reranking: From objectives to strategies. IEEE MultiMedia 18(3), 12–21 (2011)

    Article  Google Scholar 

  23. Gao, Y., Wang, M., Zha, Z., Shen, J., Li, X., Wu, X.: Visual-textual joint relevance learning for tag-based social image search. IEEE Transactions on Image Processing (in press), doi:10.1109/TIP.2012.2202676

    Article  MathSciNet  MATH  Google Scholar 

  24. Schau, H.J., Gilly, M.C.: We are what we post? self presentation in personal web space. Journal of Comsumer Research 30(3), 385–404 (2003)

    Article  Google Scholar 

  25. Erving, G.: The Presentation of Self in Everyday Life, pp. 17–25. The Overlook Press, New York (1959)

    Google Scholar 

  26. Wang, Z., Sheikh, H.R., Bovik, A.C.: Objective Video Quality Assessment, pp. 1041–1078. CRC Press (2003)

    Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Wang, R.Y., Strong, D.M.: Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems 12(4), 5–33 (1996)

    Article  Google Scholar 

  29. Leea, Y.W., Strongb, D.M., Kahnc, B.K., Wang, R.Y.: Aimq: a methodology for information quality assessment. Information & Management 40(2), 133–146 (2002)

    Article  Google Scholar 

  30. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer US (2011)

    MATH  Google Scholar 

  31. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)

    Article  Google Scholar 

  32. Joshi, D., Datta, R., Fedorovskaya, E., Luong, Q.T., Wang, J., Li, J., Luo, J.: Aesthetics and emotions in images. IEEE Signal Processing Magazine 28(5), 94–115 (2011)

    Article  Google Scholar 

  33. Wang, Z., Sheikh, H., Bovik, A.: No-reference perceptual quality assessment of jpeg compressed images. In: 2002 International Conference on Image Processing, vol. 1, pp. I–477 – I–480 (2002)

    Google Scholar 

  34. Sheikh, H., Sabir, M., Bovik, A.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  35. Liu, B.: Opinion mining and sentiment analysis. In: Carey, M.J., Ceri, S. (eds.) Web Data Mining. Data-Centric Systems and Applications, pp. 459–526. Springer, Heidelberg (2011)

    Google Scholar 

  36. Methodology for the subjective assessment of the quality of television pictures. ITU-R BT.500-11 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Q., Yang, Y., Wang, X., Cao, L. (2013). Quality Assessment on User Generated Image for Mobile Search Application. In: Li, S., et al. Advances in Multimedia Modeling. Lecture Notes in Computer Science, vol 7733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35728-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35728-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35727-5

  • Online ISBN: 978-3-642-35728-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics