Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Affine Robust Binary Codes Based on Locality Preserving Hash

  • Conference paper
Advances in Multimedia Modeling (MMM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7732))

Included in the following conference series:

  • 2284 Accesses

Abstract

In large scale vision applications, high-dimensional descriptors extracted from image patches are in large quantities. Thus hashing methods that compact descriptors to binary codes have been proposed to achieve practical resource consumption. Among these methods, unsupervised hashing aims to preserve Euclidean distances, which do not correlate well with the similarity of image patches. Supervised hashing methods exploit labeled data to learn binary codes based on visual or semantic similarity, which are usually slow to train and consider global structure of data. When data lie on a sub-manifold, global structure can not reflect the inherent structure well and may lead to incompact codes. We propose locality preserving hash (LPH) to learn affine robust binary codes. LPH preserves local structure by embedding data into a sub-manifold, and performing binarization that minimize false classification ratio while keeping partition balanced. Experiments on two datasets show that LPH is easy to train and performs better than state-of-the-art methods with more compact binary codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.: Locality-sensitive hashing scheme based on p-stable distributions. In: SCG 2004: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 253–262. ACM (2004)

    Google Scholar 

  2. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Proceedings of the 22nd Annual Conference on Neural Information Processing Systems, NIPS (2008)

    Google Scholar 

  3. Kulis, B., Darrell, T.: Learning to Hash with Binary Reconstructive Embeddings. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1042–1050 (2009)

    Google Scholar 

  4. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approx. Reasoning 50, 969–978 (2009)

    Article  Google Scholar 

  5. Wang, J., Kumar, S., Chang, S.-F.: Semi-supervised hashing for scalable image retrieval. In: Computer Vision and Pattern Recognition (CVPR), pp. 3424–3431 (2010)

    Google Scholar 

  6. Min, K., Yang, L., Wright, J., Wu, L., Hua, X.-S., Ma, Y.: Compact Projection: Simple and Efficient Near Neighbor Search with Practical Memory Requirements. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, USA (2010)

    Google Scholar 

  7. He, J., Radhakrishnan, R., Chang, S.-F., Bauer, C.: Compact hashing with joint optimization of search accuracy and time. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 753–760 (2011)

    Google Scholar 

  8. Zhang, W., Gao, K., Zhang, Y., Li, J.: Efficient approximate nearest neighbor search with integrated binary codes. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 1189–1192. ACM, Scottsdale (2011)

    Chapter  Google Scholar 

  9. Strecha, C., Bronstein, A., Bronstein, M., Fua, P.: LDAHash: Improved Matching with Smaller Descriptors. IEEE T. PAMI 34, 1 (2012)

    Article  Google Scholar 

  10. Wong, W.K., Zhao, H.T.: Supervised optimal locality preserving projection. Pattern Recogn. 45, 186–197 (2012)

    Article  Google Scholar 

  11. Mu, Y., Shen, J., Yan, S.: Weakly-supervised hashing in kernel space. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3344–3351 (2010)

    Google Scholar 

  12. He, X., Niyogi, P.: Locality Preserving Projections. In: Neural Information Processing Systems. MIT Press (2003)

    Google Scholar 

  13. Gao, K., Zhang, Y., Luo, P., Zhang, W., Xia, J., Lin, S.: Visual stem mapping and geometric tense coding for augmented visual vocabulary. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2012)

    Google Scholar 

  14. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45, 891–923 (1998)

    Article  MathSciNet  Google Scholar 

  15. Jegou, H., Douze, M., Schmid, C.: Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Sivic, J., Zisserman, A.: Video Google: A Text Retrieval Approach to Object Matching in Videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV), vol. 2, p. 1470 (2003)

    Google Scholar 

  17. Jegou, H.: Product Quantization for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 117–128 (2011)

    Article  Google Scholar 

  18. Poullot, S., Buisson, O., Crucianu, M.: Z-grid-based probabilistic retrieval for scaling up content-based copy detection. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, CIVR (2007)

    Google Scholar 

  19. Brandt, J.: Transform coding for fast approximate nearest neighbor search in high dimensions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1815–1822 (2010)

    Google Scholar 

  20. Jain, P., Kulis, B., Grauman, K.: Fast image search for learned metrics. In: Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  21. Liu, W., Wang, J., Ji, R., Jiang, Y.-G., Chang, S.-F.: Supervised Hashing with Kernels. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2012)

    Google Scholar 

  22. Nister, D., Stewenius, H.: Scalable Recognition with a Vocabulary Tree. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168 (2006)

    Google Scholar 

  23. Morel, J.M., Yu, G.: ASIFT: A New Framework for Fully Affine Invariant Image Comparison. SIAM Journal on Imaging Sciences 2, 438–469 (2009)

    Article  MathSciNet  Google Scholar 

  24. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the IEEE International Conference on Computer Vision, vol. 1152, pp. 1150–1157 (1999)

    Google Scholar 

  25. http://www.cad.zju.edu.cn/home/dengcai/Data/ReproduceExp.html

  26. Norouzi, M., Punjani, A., Fleet, D.J.: Fast Search in Hamming Space with Multi-Index Hashing. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2012)

    Google Scholar 

  27. Wang, W., Zhang, D., Zhang, Y., et al.: Robust Spatial Matching for Object Retrieval and Its Parallel Implementation on GPU. IEEE Trans. on Multimedia 13(6), 1308–1318 (2011)

    Article  Google Scholar 

  28. Xie, H., Gao, K., Zhang, Y., Tang, S., et al.: Efficient Feature Detection and Effective Post-Verification for Large Scale Near-Duplicate Image Search. IEEE Trans. on Multimedia 13(6), 1319–1332 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, W., Gao, K., Zhang, D., Li, J. (2013). Learning Affine Robust Binary Codes Based on Locality Preserving Hash. In: Li, S., et al. Advances in Multimedia Modeling. MMM 2013. Lecture Notes in Computer Science, vol 7732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35725-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35725-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35724-4

  • Online ISBN: 978-3-642-35725-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics