Nothing Special   »   [go: up one dir, main page]

Skip to main content

Refining Image Annotation by Integrating PLSA with Random Walk Model

  • Conference paper
Advances in Multimedia Modeling (MMM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7732))

Included in the following conference series:

Abstract

In this paper, we present a new method for refining image annotation by integrating probabilistic latent semantic analysis (PLSA) with random walk (RW) model. First, we construct a PLSA model with asymmetric modalities to estimate the posterior probabilities of each annotating keywords for an image, and then a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity. Followed by a random walk process over the label graph is employed to further mine the correlation of the keywords so as to capture the refining annotation, which plays a crucial role in semantic based image retrieval. The novelty of our method mainly lies in two aspects: exploiting PLSA to accomplish the initial semantic annotation task and implementing random walk process over the constructed label similarity graph to refine the candidate annotations generated by the PLSA. Compared with several state-of-the-art approaches on Corel5k and Mirflickr25k datasets, the experimental results show that our approach performs more efficiently and accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, J., Wang, J.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1075–1088 (2003)

    Article  Google Scholar 

  2. Cusano, C., Ciocca, G., Schettini, R.: Image annotation using svm. In: Proceedings of Internet imaging IV. SPIE, vol. 5304, pp. 330–338 (2004)

    Google Scholar 

  3. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 119–126. ACM (2003)

    Google Scholar 

  5. Lavrenko, V., Manmatha, R., Jeon, J.: A model for learning the semantics of pictures. In: NIPS (2003)

    Google Scholar 

  6. Feng, S., Manmatha, R., Lavrenko, V.: Multiple bernoulli relevance models for image and video annotation. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. 1002–1009. IEEE (2004)

    Google Scholar 

  7. Monay, F., Gatica-Perez, D.: Modeling semantic aspects for cross-media image indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1802–1817 (2007)

    Article  Google Scholar 

  8. Jin, Y., Khan, L., Wang, L., Awad, M.: Image annotations by combining multiple evidence & wordnet. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 706–715. ACM (2005)

    Google Scholar 

  9. Wang, C., Jing, F., Zhang, L., Zhang, H.: Image annotation refinement using random walk with restarts. In: Proceedings of the 14th Annual ACM International Conference on Multimedia, pp. 647–650. ACM (2006)

    Google Scholar 

  10. Wang, C., Jing, F., Zhang, L., Zhang, H.: Content-based image annotation refinement. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  11. Liu, D., Hua, X., Yang, L., Wang, M., Zhang, H.: Tag ranking. In: Proceedings of the 18th International Conference on World Wide Web, pp. 351–360. ACM (2009)

    Google Scholar 

  12. Xu, H., Wang, J., Hua, X., Li, S.: Tag refinement by regularized lda. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 573–576. ACM (2009)

    Google Scholar 

  13. Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior and error sparsity. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 461–470. ACM (2010)

    Google Scholar 

  14. Zhuang, J., Hoi, S.: A two-view learning approach for image tag ranking. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, pp. 625–634. ACM (2011)

    Google Scholar 

  15. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42(1), 177–196 (2001)

    Article  Google Scholar 

  16. Li, Z., Liu, X., Shi, Z., Shi, Z.: Learning image semantics with latent aspect model. In: IEEE International Conference on Multimedia and Expo, ICME 2009, pp. 366–369. IEEE (2009)

    Google Scholar 

  17. Fellbaum, C.: Wordnet. Theory and Applications of Ontology: Computer Applications, 231–243 (2010)

    Chapter  Google Scholar 

  18. Cilibrasi, R., Vitanyi, P.: The google similarity distance. IEEE Transactions on Knowledge and Data Engineering 19(3), 370–383 (2007)

    Article  Google Scholar 

  19. Huiskes, M., Lew, M.: The mir flickr retrieval evaluation. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 39–43. ACM (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tian, D., Zhao, X., Shi, Z. (2013). Refining Image Annotation by Integrating PLSA with Random Walk Model. In: Li, S., et al. Advances in Multimedia Modeling. MMM 2013. Lecture Notes in Computer Science, vol 7732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35725-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35725-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35724-4

  • Online ISBN: 978-3-642-35725-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics