Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Effective Tracking System for Multiple Object Tracking in Occlusion Scenes

  • Conference paper
Advances in Multimedia Modeling (MMM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7732))

Included in the following conference series:

Abstract

In this paper, we propose an effective multi-object tracking system which can handle the partial occlusion in the tracking process. First, this method employs the part-based model to localize the person and body parts in every frame. Then it leverages the motion characteristics of both parts and the entire body to generate the trajectories of individuals. To overcome the difficulty in partial occlusion, we propose to formulate the task of multi-object tracking into multi-object matching with body part cues. The large scale comparison experiment on the popular tracking datasets demonstrates the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watada, J., Musa, Z.B.: Tracking human motions for security system. In: SICE Annual Conference (2008)

    Google Scholar 

  2. Sungmin, K., Chang-Beom, P., Seong-Whan, L.: Tracking 3D Human Body using Partile Filter in Moving Monocular Camera. In: ICPR (2006)

    Google Scholar 

  3. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Real-time tracking of the huma body. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)

    Article  Google Scholar 

  4. Intille, S.S., Davis, J.W., Bobick, A.F.: Real-time closed-world tracking. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 697–703. IEEE Computer Society Press, Los Alamitos (1997)

    Chapter  Google Scholar 

  5. Krumm, J., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-camera multi-person tracking for EasyLiving. In: Proc. of the 3rd IEEE Int. Work. on Visual Surveillance (July 2000)

    Google Scholar 

  6. Guang, S., Afshin, D., Omar, O., Hand, E., Shah, M.: Part-based Multiple-Person Tracking with Partial Occlusion Handling. In: CVPR (2012)

    Google Scholar 

  7. Huang, C., Wu, B., Nevatia, R.: Robust Object Tracking by Hierarchical Association of Detection Responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Zheng, W., Thangali, A., Sclaroff, C., Betke, M.: Coupling detection and data association for multiple object tracking. In: CVPR 2012 (2012)

    Google Scholar 

  9. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking by detection from a single uncalibrated camera. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(9), 1820–1833 (2011)

    Article  Google Scholar 

  10. Fragkiadaki, K., Jianbo, S.: Detection free tracking: Exploiting motion and topology for segmenting and tracking under entanglement. In: CVPR 2011 (2011)

    Google Scholar 

  11. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)

    Google Scholar 

  12. Comaniciu, D., Ramesh, V., Meer, P.: Real-time Tracking of Non-rigid Objects using Mean Shift. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  13. Grimson, W.E.L., Stauffer, C., Romano, R., Lee, L.: Using Adaptive Tracking to Classify and Monitor Activities in a site. In: Proc. Computer Vision and Pattern Recognition, pp. 22–29 (1998)

    Google Scholar 

  14. Beymer, D., Konolige, K.: Real-time tracking of multiple people using stereo. In: Proc. of the IEEE Frame Rate Workship, Corfu, Greece (1999)

    Google Scholar 

  15. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. In: PAMI (2010)

    Article  Google Scholar 

  16. Joachims, T., Schölkopf, B., Burges, C., Smola, A. (eds.): Making Large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, pp. 169–184 (1999)

    Google Scholar 

  17. Haque, M., Murshed, M., Paul, M.: On stable dynamic background generation technique using gaussian mixture models for robust object detection. In: AVSS 2008 (2008)

    Google Scholar 

  18. Dalal, N., Triggs, B.: Histogram of Oriented Gradients for Human Detection. In: CVPR 2005 (2005)

    Google Scholar 

  19. Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation for face, text and vehicle detection and tracking in video: data, metrics, and protocol. In: PAMI (2009)

    Google Scholar 

  20. Benfold, B., Reid, I.: Stable multi-target tracking in realtime surveillance video. In: CVPR (2011)

    Google Scholar 

  21. Pellegrini, S., Ess, A., Van Gool, L.: Improving Data Association by Joint Modeling of Pedestrian Trajectories and Groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Yamaguchi, K., Berg, A., Ortiz, L., Berg, T.: Who are you with and where are you going. In: CVPR (2011)

    Google Scholar 

  23. Leal-Taixe, L., Pons-Moll, G., Rosenhahn, B.: Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker. In: ICCV Workshop on Modeling, Simulation and Visual Analysis of Large Crowds (2011)

    Google Scholar 

  24. Wang, M., Hong, R., Li, G., Zha, Z.-J., Yan, S., Chua, T.-S.: Event Driven Web Video Summarization by Tag Localization and Key-Shot Identification. IEEE Transactions on Multimedia 14(4), 975–985 (2012)

    Article  Google Scholar 

  25. Wang, M., Hong, R., Yuan, X.-T., Yan, S., Chua, T.-S.: Movie2Comics: Towards a Lively Video Content Presentation. IEEE Transactions on Multimedia 14(3), 858–870 (2012)

    Article  Google Scholar 

  26. Wang, M., Hua, X.-S., Tang, J., Hong, R.: Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation. IEEE Transactions on Multimedia 11(3), 465–476 (2009)

    Article  Google Scholar 

  27. Wang, M., Hua, X.-S., Hong, R., Tang, J., Qi, G.-J., Song, Y.: Unified Video Annotation Via Multi-Graph Learning. IEEE Transactions on Circuits and Systems for Video Technology 19(5), 733–746 (2009)

    Article  Google Scholar 

  28. Bise, R., Li, K., Eom, S., Kanade, T.: Reliably Tracking Partially Overlapping Neural Stem Cells in DIC Microscopy Image Sequences. In: Proceedings of the MICCAI Workshop on Optical Tissue Image analysis in Microscopy, Histopathology and Endoscopy (OPTIMHisE), London, UK, pp. 67–77 (September 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nie, W., Liu, A., Su, Y., Gao, Z. (2013). An Effective Tracking System for Multiple Object Tracking in Occlusion Scenes. In: Li, S., et al. Advances in Multimedia Modeling. MMM 2013. Lecture Notes in Computer Science, vol 7732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35725-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35725-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35724-4

  • Online ISBN: 978-3-642-35725-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics