Abstract
In this paper, we propose an effective multi-object tracking system which can handle the partial occlusion in the tracking process. First, this method employs the part-based model to localize the person and body parts in every frame. Then it leverages the motion characteristics of both parts and the entire body to generate the trajectories of individuals. To overcome the difficulty in partial occlusion, we propose to formulate the task of multi-object tracking into multi-object matching with body part cues. The large scale comparison experiment on the popular tracking datasets demonstrates the superiority of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Watada, J., Musa, Z.B.: Tracking human motions for security system. In: SICE Annual Conference (2008)
Sungmin, K., Chang-Beom, P., Seong-Whan, L.: Tracking 3D Human Body using Partile Filter in Moving Monocular Camera. In: ICPR (2006)
Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Real-time tracking of the huma body. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)
Intille, S.S., Davis, J.W., Bobick, A.F.: Real-time closed-world tracking. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 697–703. IEEE Computer Society Press, Los Alamitos (1997)
Krumm, J., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-camera multi-person tracking for EasyLiving. In: Proc. of the 3rd IEEE Int. Work. on Visual Surveillance (July 2000)
Guang, S., Afshin, D., Omar, O., Hand, E., Shah, M.: Part-based Multiple-Person Tracking with Partial Occlusion Handling. In: CVPR (2012)
Huang, C., Wu, B., Nevatia, R.: Robust Object Tracking by Hierarchical Association of Detection Responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)
Zheng, W., Thangali, A., Sclaroff, C., Betke, M.: Coupling detection and data association for multiple object tracking. In: CVPR 2012 (2012)
Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking by detection from a single uncalibrated camera. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(9), 1820–1833 (2011)
Fragkiadaki, K., Jianbo, S.: Detection free tracking: Exploiting motion and topology for segmenting and tracking under entanglement. In: CVPR 2011 (2011)
Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time Tracking of Non-rigid Objects using Mean Shift. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (2000)
Grimson, W.E.L., Stauffer, C., Romano, R., Lee, L.: Using Adaptive Tracking to Classify and Monitor Activities in a site. In: Proc. Computer Vision and Pattern Recognition, pp. 22–29 (1998)
Beymer, D., Konolige, K.: Real-time tracking of multiple people using stereo. In: Proc. of the IEEE Frame Rate Workship, Corfu, Greece (1999)
Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. In: PAMI (2010)
Joachims, T., Schölkopf, B., Burges, C., Smola, A. (eds.): Making Large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, pp. 169–184 (1999)
Haque, M., Murshed, M., Paul, M.: On stable dynamic background generation technique using gaussian mixture models for robust object detection. In: AVSS 2008 (2008)
Dalal, N., Triggs, B.: Histogram of Oriented Gradients for Human Detection. In: CVPR 2005 (2005)
Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation for face, text and vehicle detection and tracking in video: data, metrics, and protocol. In: PAMI (2009)
Benfold, B., Reid, I.: Stable multi-target tracking in realtime surveillance video. In: CVPR (2011)
Pellegrini, S., Ess, A., Van Gool, L.: Improving Data Association by Joint Modeling of Pedestrian Trajectories and Groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010)
Yamaguchi, K., Berg, A., Ortiz, L., Berg, T.: Who are you with and where are you going. In: CVPR (2011)
Leal-Taixe, L., Pons-Moll, G., Rosenhahn, B.: Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker. In: ICCV Workshop on Modeling, Simulation and Visual Analysis of Large Crowds (2011)
Wang, M., Hong, R., Li, G., Zha, Z.-J., Yan, S., Chua, T.-S.: Event Driven Web Video Summarization by Tag Localization and Key-Shot Identification. IEEE Transactions on Multimedia 14(4), 975–985 (2012)
Wang, M., Hong, R., Yuan, X.-T., Yan, S., Chua, T.-S.: Movie2Comics: Towards a Lively Video Content Presentation. IEEE Transactions on Multimedia 14(3), 858–870 (2012)
Wang, M., Hua, X.-S., Tang, J., Hong, R.: Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation. IEEE Transactions on Multimedia 11(3), 465–476 (2009)
Wang, M., Hua, X.-S., Hong, R., Tang, J., Qi, G.-J., Song, Y.: Unified Video Annotation Via Multi-Graph Learning. IEEE Transactions on Circuits and Systems for Video Technology 19(5), 733–746 (2009)
Bise, R., Li, K., Eom, S., Kanade, T.: Reliably Tracking Partially Overlapping Neural Stem Cells in DIC Microscopy Image Sequences. In: Proceedings of the MICCAI Workshop on Optical Tissue Image analysis in Microscopy, Histopathology and Endoscopy (OPTIMHisE), London, UK, pp. 67–77 (September 2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nie, W., Liu, A., Su, Y., Gao, Z. (2013). An Effective Tracking System for Multiple Object Tracking in Occlusion Scenes. In: Li, S., et al. Advances in Multimedia Modeling. MMM 2013. Lecture Notes in Computer Science, vol 7732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35725-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-35725-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35724-4
Online ISBN: 978-3-642-35725-1
eBook Packages: Computer ScienceComputer Science (R0)