Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bayesian Models for the Multi-sample Time-Course Microarray Experiments

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2011)

Abstract

In this paper we present a functional Bayesian method for detecting genes which are temporally differentially expressed between several conditions. We identify the nature of differential expression (e.g., gene is differentially expressed between the first and the second sample but is not differentially expressed between the second and the third) and subsequently we estimate gene expression temporal profiles. The proposed procedure deals successfully with various technical difficulties which arise in microarray time-course experiments such as a small number of observations, non-uniform sampling intervals and presence of missing data or repeated measurements. The procedure allows to account for various types of errors, thus, offering a good compromise between nonparametric and normality assumption based techniques. In addition, all evaluations are carried out using analytic expressions, hence, the entire procedure requires very small computational effort. The performance of the procedure is studied using simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramovich, F., Angelini, C.: Bayesian maximum a posteriori multiple testing procedure. Sankhya 68, 436–460 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Angelini, C., De Canditiis, D., Mutarelli, M., Pensky, M.: A Bayesian Approach to Estimation and Testing in Time-course Microarray Experiments. Stat. Appl. Gen. Mol. Bio. 6, Art. 24 (2007)

    Google Scholar 

  3. Angelini, C., De Canditiis, D., Pensky, M.: Bayesian Models for the Two-Sample Time-course Microarray Experiments. CSDA 53, 1547–1565 (2009)

    MATH  Google Scholar 

  4. Bar–Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20, 2493–2503 (2004)

    Article  Google Scholar 

  5. Berger, O.J.: Statistical Decision Theory and Bayesian Analysis. Springer Series in Statistics (1985)

    Google Scholar 

  6. Conesa, A., Nueda, M.J., Ferrer, A., Talon, M.: MaSigPro: a method to identify significantly differential expression profiles in time-course microarray-experiments. Bioinformatics 22, 1096–1102 (2006)

    Article  Google Scholar 

  7. Cui, X., Kerr, M.K., Churchill, G.A.: Transformation for cDNA Microarray Data. Stat. Appl. Gen. Mol. Bio. 2 (2002)

    Google Scholar 

  8. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Academic Press, New York (1980)

    Google Scholar 

  9. Heard, N.A., Holmes, C.C., Stephens, D.A.: A quantitative study of gene regulation involved in the Immune response of Anopheline Mosquitoes: An application of Bayesian hierarchical clustering of curves. JASA 101, 18–29 (2006)

    MathSciNet  MATH  Google Scholar 

  10. McLachlan, G., Do, K.A., Ambroise, C.: Analyzing microarray gene expression data. Wiley Series in Probability and Statistics (2004)

    Google Scholar 

  11. Müller, U., Schick, A., Wefelmeyer, W.: Estimating the error variance in nonparametric regression by a covariate-matched U-statistic. Statistics 37, 179–188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Storey, J.D., Xiao, W., Leek, J.T., Tompkins, R.G., Davis, R.W.: Significance analysis of time course microarray experiments. PNAS 12, 12837–12842 (2005)

    Article  Google Scholar 

  13. Tai, Y.C., Speed, T.P.: On gene ranking using replicated microarray time course data. Biometrics 65, 40–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vinciotti, V., Yu, K.: M-quantile regression analysis of temporal gene expression data. Stat. Stat. Appl. Gen. Mol. Bio. 8, Art. 41 (2009)

    Google Scholar 

  15. Wit, E., McClure, J.: Statistics for Microarrays: Design, Analysis and Inference. Wiley (2004)

    Google Scholar 

  16. Yang, Y.H., Dudoit, S., Luu, P., Lin, M.D., Peng, V., Ngai, J., Speed, T.P.: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research 30 (2002)

    Google Scholar 

  17. Yuan, M., Kendziorski, C.: Hidden Markov Models for microarray time course data in multiple biological conditions. JASA 101, 1323–1340 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angelini, C., De Canditiis, D., Pensky, M., Brownstein, N. (2012). Bayesian Models for the Multi-sample Time-Course Microarray Experiments. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2011. Lecture Notes in Computer Science(), vol 7548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35686-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35686-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35685-8

  • Online ISBN: 978-3-642-35686-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics