Nothing Special   »   [go: up one dir, main page]

Skip to main content

Solving Biclustering with a GRASP-Like Metaheuristic: Two Case-Studies on Gene Expression Analysis

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2011)

Abstract

The explosion of ‘‘omics’’ data over the past few decades has generated an increasing need of efficiently analyzing high-dimensional gene expression data in several different and heterogenous contexts, such as for example in information retrieval, knowledge discovery, and data mining. For this reason, biclustering, or simultaneous clustering of both genes and conditions has generated considerable interest over the past few decades. Unfortunately, the problem of locating the most significant bicluster has been shown to be NP-complete. We have designed and implemented a GRASP-like heuristic algorithm to efficiently find good solutions in reasonable running times, and to overcome the inner intractability of the problem from a computational point of view.

Experimental results on two datasets of expression data are promising indicating that this algorithm is able to find significant biclusters, especially from a biological point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hartigan, J.: Direct clustering of a data matrix. J. Am. Stat. Assoc. 67, 123–127 (1972)

    Article  Google Scholar 

  2. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Altman, R., Bailey, T., Bourne, P., Gribskov, M., Lengauer, T., Shindyalov, I. (eds.) Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB 2000), pp. 93–103 (2000)

    Google Scholar 

  3. Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 24–45 (2004)

    Article  Google Scholar 

  4. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl. 1), S136–S144 (2002)

    Article  Google Scholar 

  5. Wang, H., Wang, W., Yang, J., Yu, P.: Clustering by pattern similarity in large data sets. In: Proc. 2002 ACM SIGMOD Int’l Conf. Management of Data, pp. 394–405 (2002)

    Google Scholar 

  6. Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. Proc. Natl. Acad. Sci. USA 97 22, 12079–12084 (2000)

    Article  Google Scholar 

  7. Tang, C., Zhang, L., Zhang, I., Ramanathan, M.: Interrelated two-way clustering: An unsupervised approach for gene expression data analysis. In: Proc. Second IEEE Int’l Symp. Bioinformatics and Bioeng., pp. 41–48 (2001)

    Google Scholar 

  8. Duffy, D., Quiroz, A.: A permutation based algorithm for block clustering. J. Classif. 8, 65–91 (1991)

    Article  MathSciNet  Google Scholar 

  9. Cho, H., Dhillon, I., Guan, Y., Sra, S.: Minimum Sum-Squared Residue Co-clustering of Gene Expression Data. In: Berry, M., Dayal, U. (eds.) Proceedings of the 4th SIAM Int’l Conf. Data Mining (2004)

    Google Scholar 

  10. Yang, J., Wang, W., Wang, H., Yu, P.: δ-clusters: Capturing subspace correlation in a large data set. In: Proc. 18th IEEE Int’l Conf. Data Eng., pp. 517–528 (2002)

    Google Scholar 

  11. Yang, J., Wang, W., Wang, H., Yu, P.: Enhanced biclustering on expression data. In: Proc. Third IEEE Conf. Bioinformatics and Bioeng., pp. 321–327 (2003)

    Google Scholar 

  12. Klugar, Y., Basri, R., Chang, J., Gerstein, M.: Spectral biclustering of microarray data: Coclustering genes and conditions. Genome Res. 13, 703–716 (2003)

    Article  Google Scholar 

  13. Segal, E., Taskar, B., Gasch, A., Friedman, N., Koller, D.: Rich probabilistic models for gene expression. Bioinformatics 17(suppl. 1), S243–S252 (2001)

    Article  Google Scholar 

  14. Sheng, Q., Moreau, Y., Moor, B.D.: Biclustering microarray data by gibbs sampling. Bioinformatics 19(suppl. 2), ii196–ii205 (2003)

    Google Scholar 

  15. Manjunath Aradhya, V.N., Masulli, F., Rovetta, S.: A Novel Approach for Biclustering Gene Expression Data Using Modular Singular Value Decomposition. In: Masulli, F., Peterson, L.E., Tagliaferri, R. (eds.) CIBB 2009. LNCS, vol. 6160, pp. 254–265. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Bryan, K., Cunningham, P., Bolshakova, N.: Application of simulated annealing to the biclustering of gene expression data. IEEE Trans. Inf. Technol. Biomed. 10(3), 519–525 (2006)

    Article  Google Scholar 

  17. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn. 39, 2464–2477 (2006)

    Article  MATH  Google Scholar 

  18. Dharan, S., Nair, A.: Biclustering of gene expression data using reactive greedy randomized adaptive search procedure. BMC Bioinformatics 10(suppl. 1), S27 (2009)

    Article  Google Scholar 

  19. Tanay, A., Sharan, R., Shamir, R.: Biclustering Algorithms: A Survey. In: Aluru, S. (ed.) Handbook of Computational Molecular Biology. Computer and Information Science Series. S. Chapman & Hall/CRC (2005)

    Google Scholar 

  20. Peeters, R.: The maximum edge biclique problem is NP-Complete. Discrete Appl. Math. 131(3), 651–654 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Global Optim. 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Festa, P., Resende, M.: GRASP: An annotated bibliography. In: Ribeiro, C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer Academic Publishers (2002)

    Google Scholar 

  24. Festa, P., Resende, M.: An annotated bibliography of GRASP – Part I: Algorithms. International Transactions in Operational Research 16(1), 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Festa, P., Resende, M.: An annotated bibliography of GRASP – Part II: Applications. International Transactions in Operational Research 16(2), 131–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Prais, M., Ribeiro, C.: Reactive GRASP: An application to a matrix decomposition problem in TDMA traffic assignment. INFORMS J. Comput. 12, 164–176 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Binato, S., Oliveira, G.: A Reactive GRASP for transmission network expansion planning. In: Ribeiro, C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 81–100. Kluwer Academic Publishers (2002)

    Google Scholar 

  28. Delmaire, H., Díaz, J., Fernández, E., Ortega, M.: Reactive GRASP and tabu search based heuristics for the single source capacitated plant location problem. INFOR 37, 194–225 (1999)

    Google Scholar 

  29. Tavazoie, S., Hughes, J., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285 (1999)

    Article  Google Scholar 

  30. Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I., Rosenwald, A., Boldrick, J., Sabet, H., Tran, T., Yu, X., Powell, J., Yang, L., Marti, G., Moore, T., Hudson, J., Lu, L., Lewis, D., Tibshirani, R., Sherlock, G., Chan, W., Greiner, T., Weisenburger, D., Armitage, J., Warnke, R., Levy, R., Wilson, W., Grever, M., Byrd, J., Botstein, D., Brown, P., Staudt, L.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  31. http://www.yeastgenome.org/cgi-bin/GO/goTermFinder

  32. Mi, H., Dong, Q., Muruganujan, A., Gaudet, P., Lewis, S., Thomas, P.: PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the gene ontology consortium. Nucleic Acids Res. 38, D204–D210 (2010)

    Article  Google Scholar 

  33. Frinhani, R.M.D., Silva, R.M.A., Mateus, G.R., Festa, P., Resende, M.G.C.: GRASP with Path-Relinking for Data Clustering: A Case Study for Biological Data. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 410–420. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  34. Laguna, M., Martí, R.: GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J. Comput. 11, 44–52 (1999)

    Article  MATH  Google Scholar 

  35. Festa, P., Pardalos, P., Resende, M., Ribeiro, C.: Randomized heuristics for the MAX-CUT problem. Optim. Methods Softw. 7, 1033–1058 (2002)

    Article  MathSciNet  Google Scholar 

  36. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Facchiano, A., Festa, P., Marabotti, A., Milanesi, L., Musacchia, F. (2012). Solving Biclustering with a GRASP-Like Metaheuristic: Two Case-Studies on Gene Expression Analysis. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2011. Lecture Notes in Computer Science(), vol 7548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35686-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35686-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35685-8

  • Online ISBN: 978-3-642-35686-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics