Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 467))

Abstract

During system exploitation and maintenance an important issue is to evaluate its operational profile and detect occurring anomalies or situations which may lead to such anomalies (anomaly prediction issue). To resolve these problems we have studied the capabilities of standard event and performance logs which are available in computer systems. In particular we have concentrated on checking the morphology and information contents of various event logs (system, application levels) as well as the correlation of performance logs with operational profiles. This analysis has been supported with some tools and special scripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings 20th International Conference on Very Large Databases, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)

    Google Scholar 

  2. Brandt, J., et al.: Using probabilistic characterization to reduce runtime faults in HPC systems. In: 8th IEEE Int. Symp. on Cluster Computing and the Grid, pp. 759–764 (2008)

    Google Scholar 

  3. Case, J., Fedor, M., Schoffstall, M., Davin, J.: A Simple Network Management Protocol, SNMP (1990)

    Google Scholar 

  4. Chandola, V., Baerjee, A., Kumar, V.: Anomaly detection, a survey. ACM Computing Surveys 41(3) (2009)

    Google Scholar 

  5. Chen, C., Singh, N., Yajnik, M.: Log analytics for dependable enterprise telephony. In: Proc. of 9th European Dependable Computing Conference, pp. 94–101. IEEE Comp. Soc. (2012)

    Google Scholar 

  6. Cinque, M., et al.: A logging approach for effective dependability evaluation of computer systems. In: Proc. of 2nd IEEE Int. Conf. on Dependability, pp. 105–110 (2009)

    Google Scholar 

  7. Dong, G., Li, J.: Efficient mining of Emerging Patterns: Discovering Trends and Differences. In: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining (SIGKDD 1999), San Diego, USA, pp. 43–52 (1999)

    Google Scholar 

  8. Gmach, D., et al.: Workload analysis and demand prediction of enterprise data canter applications. In: 10th IEEE Int. Symposium on ISSWC, pp. 171–180 (2007)

    Google Scholar 

  9. John, L.K., Eeckhout, L.: Performance evaluation and benchmarking. CRC Press (2006)

    Google Scholar 

  10. Król, M., Sosnowski, J.: Multidimensional monitoring of computer systems. In: Proc. of IEEE Symp. and Workshops on Ubiquitous, Autonomic and Trusted Computing, pp. 68–74 (2009)

    Google Scholar 

  11. Kubacki, M., Sosnowski, J.: Analysing Linux log profiles in Linux systems. In: Borzemski, L., et al. (eds.) Information Systems Engineering, pp. 135–143 (2011) ISBN 978-83-7493-630-9

    Google Scholar 

  12. Magalhaes, J.P., Silva, L.M.: Adaptive profiling for root-cause analysis of performance anomalies in Web based applications. In: Proc. of IEEE Int. Symp. on Network Computing and Applications, pp. 171–178 (2011)

    Google Scholar 

  13. Naggapan, M., Vouk, M.A.: Abstracting Log Lines to Log Event Types for Mining Software System Logs. In: Proceedings of Mining Software Repositories (Co-Located with ICSE 2010), pp. 114–117 (2010)

    Google Scholar 

  14. Oliner, A., Stearley, J.: What Supercomputers Say: A Study of Five System Logs. In: Proc. of the IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 575–584 (2007)

    Google Scholar 

  15. Salfiner, F., Lenk, M., Malek, M.: A survey of failure prediction methods. ACM Computing Surveys 42(3), 10.1–10.42 (2010)

    Google Scholar 

  16. Simache, C., Kaaniche, M.: Availability assessment of SunOS/Solaris Unix systems based on syslog and wtmpx log files; a case study. In: Proc. of the 11th Pacific Rim International Symposium on Dependable Computing (2005)

    Google Scholar 

  17. Sosnowski, J., Poleszak, M.: On-line monitoring of computer systems. In: Proc. of IEEE DELTA Workshop, pp. 327–331 (2006)

    Google Scholar 

  18. Sosnowski, J., Gawkowski, P., Cabaj, K.: Event and performance logs in system management and evaluation. In: Information Systems in Management XIV, Security and Effectiveness of ICT Systems, pp. 83–93. WULS Press, Warsaw (2011)

    Google Scholar 

  19. Ye, N.: Secure Computer and Network Systems. John Wiley& Sons, Ltd., Chichester (2008) ISBN 978-0-470-02324-2

    Book  Google Scholar 

  20. Li, Y., Zheng, Z., Lan, Z.: Practical Online Failure Prediction for Blue Gene/P: Period-based vs. Event-driven. In: Proc. of the IEEE/IFIP International Conference on Dependable Systems and Networks Workshops, pp. 259–264 (2011)

    Google Scholar 

  21. Information technology - AT Attachment 8 - ATA/ATAPI Command Set (ATA8-ACS), T13/1699-D (2006)

    Google Scholar 

  22. CrystalDiskInfo homepage, http://crystalmark.info/

  23. Pinheiro, E., Weber, W.D., Barroso, L.A.: Failure Trends in a Large Disk Drive Population. In: Proc. of the 5th USENIX Conference on File and Storage Technologies (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Sosnowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sosnowski, J., Gawkowski, P., Cabaj, K. (2013). Exploring the Space of System Monitoring. In: Bembenik, R., Skonieczny, L., Rybinski, H., Kryszkiewicz, M., Niezgodka, M. (eds) Intelligent Tools for Building a Scientific Information Platform. Studies in Computational Intelligence, vol 467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35647-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35647-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35646-9

  • Online ISBN: 978-3-642-35647-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics