Nothing Special   »   [go: up one dir, main page]

Skip to main content

Constrained Spectral Clustering Using Absorbing Markov Chains

  • Conference paper
Advanced Data Mining and Applications (ADMA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7713))

Included in the following conference series:

  • 3548 Accesses

Abstract

Constrained spectral clustering (CSC) has recently shown great promise in improving clustering accuracy or catering for some specific grouping bias by encoding pairwise constraints into spectral clustering. Essentially, the existing CSC algorithms coarsely lie in two camps in terms of encoding pairwise constraints: (1) they modify the original similarity matrix to encode pairwise constraints; (2) they regularize the spectral embedding to encode pairwise constraints. Those methods have made significant progresses, but little of them takes the extensional sense of pairwise constraints into account, e.g., respective neighbors of two musk-link points lie in a same cluster with certain high probabilities, and respective neighbors of two cannot-link points lie in different clusters with certain high probabilities, etc. In this paper, we use absorbing Markov chains to formulate the extensional sense of instance-level constraints as such, under the assumption that the formulation aids in improving the accuracy of CSC. We describe a new CSC algorithm which could propagates the extensional sense over a partly-labeled affinity graph. Experiments over publicly available datasets verify the performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Survey 31(3), 264–323 (1999)

    Article  Google Scholar 

  2. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering with background knowledge. In: The 18th International Conference on Machine Learning, pp. 577–584. Morgan Kaufmann (2001)

    Google Scholar 

  3. Yu, S.X., Shi, J.B.: Grouping with bias. In: Advances in Neural Information Processing Systems. MIT Press (2001)

    Google Scholar 

  4. Shental, N., Bar-hillel, A., Hertz, T., Weinshall, D.: Computing gaussian mixture models with em using equivalence constraints. In: Advances in Neural Information Processing Systems 16. MIT Press (2003)

    Google Scholar 

  5. Kamvar, S.D., Klein, D., Manning, C.D.: Spectral learning. In: The International Joint Conferences on Artificial Intelligence, pp. 561–566 (2003)

    Google Scholar 

  6. Ji, X., Xu, W.: Document clustering with prior knowledge. In: The 29th Annual International Conference on Research and Development in Information Retrieval, pp. 405–412. ACM, New York (2006)

    Google Scholar 

  7. Lu, Z.: Constrained spectral clustering through affinity propagation. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society (2008)

    Google Scholar 

  8. Li, Z., Liu, J., Tang, X.: Constrained clustering via spectral regularization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 421–428. IEEE (2009)

    Google Scholar 

  9. Coleman, T., Saunderson, J., Wirth, A.: Spectral clustering with inconsistent advice. In: The 25th International Conference on Machine Learning, pp. 152–159. ACM (2008)

    Google Scholar 

  10. Wang, X., Davidson, I.: Flexible constrained spectral clustering. In: The 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 563–572 (2010)

    Google Scholar 

  11. Shi, J.B., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  12. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press (2001)

    Google Scholar 

  13. Zelnik-manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems 17, pp. 1601–1608. MIT Press (2004)

    Google Scholar 

  14. Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.: Incremental spectral clustering with application to monitoring of evolving blog communities. In: The SIAM International Conference on Data Mining (2007)

    Google Scholar 

  15. Song, Y., Chen, W.-Y., Bai, H., Lin, C.-J., Chang, E.Y.: Parallel Spectral Clustering. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 374–389. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Alzate, C., Suykens, J.A.K.: Multiway spectral clustering with out-of-sample extensions through weighted kernel pca. IEEE Transactions Pattern Analysis and Machine Intelligence 32(2), 335–347 (2010)

    Article  Google Scholar 

  17. Rangapuram, S.S., Hein, M.: Constrained 1-spectral clustering. Journal of Machine Learning Research, W & CP 20, 1143–1151 (2012)

    Google Scholar 

  18. Hu, G., Zhou, S., Guan, J., Hu, X.: Towards effective document clustering: A constrained k-means based approach. Information Processing and Management 44(4), 1397–1409 (2008)

    Article  Google Scholar 

  19. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.J.: Distance metric learning with application to clustering with side-information. In: NIPS, pp. 505–512 (2002)

    Google Scholar 

  20. Fowlkes, C., Belongie, S., Chung, F.R.K., Malik, J.: Spectral grouping using the nyström method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 214–225 (2004)

    Article  Google Scholar 

  21. Macqueen, J.B.: Some methods of classification and analysis of multivariate observations. In: The Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  22. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  23. Luxburg, U.V.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  24. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  25. Jebara, T., Wang, J., Chang, S.: Graph construction and b-matching for semi-supervised learning. In: ICML, p. 56 (2009)

    Google Scholar 

  26. Daitch, S.I., Kelner, J.A., Spielman, D.A.: Fitting a graph to vector data. In: The 26th Annual International Conference on Machine Learning, p. 26 (2009)

    Google Scholar 

  27. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

  28. Xu, Q., Desjardins, M., Wagstaff, K.: Constrained spectral clustering under a local proximity structure assumption. In: The International Conference of the Florida Artificial Intelligence Research Society. AAAI Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, J., Guan, J. (2012). Constrained Spectral Clustering Using Absorbing Markov Chains. In: Zhou, S., Zhang, S., Karypis, G. (eds) Advanced Data Mining and Applications. ADMA 2012. Lecture Notes in Computer Science(), vol 7713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35527-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35527-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35526-4

  • Online ISBN: 978-3-642-35527-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics