Abstract
As the explosive growth of online linked data, there is an urgent need for an efficient approach to discovering and understanding various semantic associations. Research has been done on discovering semantic associations as link paths in linked data. However, few discussions have been given on how we can understand complex and large-scale semantic associations. Generating human understandable summaries for semantic associations is a good choice. In this paper, we first give a novel definition of semantic association, and then we describe how we discover semantic associations by mining link patterns. Next, a notion of Focused Association Graph is proposed to characterize merged associations among a set of focused objects. Then we focus on summarizing of Focused Association Graph. Concise summaries are generated with the help of Steiner Tree problem. Experiments show that our approach is feasible and efficient in generating summaries for semantic associations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I.B., Sheth, A.P.: Context-aware Semantic Association Ranking. In: Proceedings of the 1st International Workshop on Semantic Web and Databases, pp. 33–50 (2003)
Ge, W., Chen, J., Hu, W., Qu, Y.: Object Link Structure in the Semantic Web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 257–271. Springer, Heidelberg (2010)
Hovy, E., Lin, C.Y.: Automated Text Summarization and the SUMMARIST System. In: Proceedings of TIPSTER Workshop, pp. 197–214 (1998)
Kou, L., Markowsky, G., Berman, L.: A Fast Algorithm for Steiner Trees. Acta Informatica 15(2), 141–145 (1981)
Anyanwu, K., Sheth, A.: p-Queries: Enabling Querying for Semantic Associations on the Semantic Web. In: Proceedings of the 12th International World Wide Web Conference, pp. 690–699 (2003)
Kochut, K.J., Janik, M.: SPARQLeR: Extended Sparql for Semantic Association Discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 145–159. Springer, Heidelberg (2007)
Zhang, X., Zhao, C., Wang, P., Zhou, F.: Mining Link Patterns in Linked Data. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 83–94. Springer, Heidelberg (2012)
Yan, X., Han, J.W.: gSpan: Graph-based Substructure Pattern Mining. In: Proceedings of the IEEE International Conference on Data Mining, pp. 721–724 (2002)
Sheth, A., Aleman-Meza, B., Arpina, I.B., et al.: Semantic Association Identification and Knowledge Discovery for National Security Applications. Journal of Database Management 16(1), 33–53 (2005)
Li, H.Y., Qu, Y.Z.: KREAG: Keyword Query Approach over RDF Data Based on Entity-Triple Association Graph. Chinese Journal of Computers 34(5), 825–835 (2011)
Mani, I.: Automatic Summarization. John Benjamins Publishing Company (2001)
Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The Summary Abox: Cutting Ontologies Down to Size. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 343–356. Springer, Heidelberg (2006)
Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ Description Logic to Disjunctive Datalog Programs. In: Proceedings of the 9th International Conference on Knowledge Representation and Reasoning, pp. 152–162 (2004)
Zhang, X., Cheng, G., Qu, Y.Z.: Ontology Summarization Based on RDF Sentence Graph. In: Proceedings of the 16th International Conference on World Wide Web, pp. 707–716 (2007)
Cheng, G., Ge, W.Y., Qu, Y.Z.: Generating Summaries for Ontology Search. In: Proceedings of the 20th International Conference on World Wide Web, pp. 27–28 (2011)
Penin, T., Wang, H., Tran, T., Yu, Y.: Snippet Generation for Semantic Web Search Engines. The Semantic Web, 493–507 (2008)
Bai, X., Delbru, R., Tummarello, G.: RDF Snippets for Semantic Web Search Engines. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1304–1318. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jiang, X., Zhang, X., Gui, W., Gao, F., Wang, P., Zhou, F. (2012). Summarizing Semantic Associations Based on Focused Association Graph. In: Zhou, S., Zhang, S., Karypis, G. (eds) Advanced Data Mining and Applications. ADMA 2012. Lecture Notes in Computer Science(), vol 7713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35527-1_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-35527-1_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35526-4
Online ISBN: 978-3-642-35527-1
eBook Packages: Computer ScienceComputer Science (R0)