Abstract
In this paper, we consider the partial gathering problem of mobile agents in asynchronous unidirectional rings equipped with whiteboards on nodes. The partial gathering problem requires, for a given input g, that each agent should move to a node and terminates so that at least g agents should meet at the same node. The requirement for the partial gathering is weaker than that for the ordinary (total) gathering, and thus, we have interests in clarifying the difference on the move complexity between them. We propose two algorithms to solve the partial gathering problem. One algorithm is deterministic and assumes unique ID of each agent. The other is randomized and assumes anonymous agents. The deterministic (resp., randomized) algorithm achieves the partial gathering in O(gn) (resp., expected O(gn + nlogk)) total number of moves where n is the ring size and k is the number of agents, while the total gathering requires Ω(kn) moves. We show that the move complexity of the deterministic algorithm is asymptotically optimal.
This work is supported in part by Grant-in-Aid for Scientific Research ((B)2030012, (B)22300009, (B)23700056, (C)24500039) of JSPS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kranakis, E., Krozanc, D., Markou, E.: The mobile agent rendezvous problem in the ring. Synthesis Lectures on Distributed Computing Theory (2010)
Gąsieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal Memory Rendezvous of Anonymous Mobile Agents in a Unidirectional Ring. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 282–292. Springer, Heidelberg (2006)
Kranakis, E., Santoro, N., Sawchuk, S.: Mobile agent rendezvous in a ring. In: Distributed Computing Systems (2003)
Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple Mobile Agent Rendezvous in a Ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004)
Kranakis, E., Krizanc, D., Markou, E.: Mobile Agent Rendezvous in a Synchronous Torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006)
Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N., Sawchuk, C.: Mobile Agents Rendezvous When Tokens Fail. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004)
Dobrev, S., Flocchini, P., Prencipe, G., Nicola, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48, 67–90 (2007)
Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple Agents RendezVous in a Ring in Spite of a Black Hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)
Suzuki, T., Izumi, T., Ooshita, F., Kakugawa, H., Msuzawa, T.: Move-optimal gossiping among mobile agents. Theoretical Computer Science 393, 90–101 (2008)
Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theory of Computing System 40, 143–162 (2007)
Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T.: Randomized Rendezvous of Mobile Agents in Anonymous Unidirectional Ring Networks. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 303–314. Springer, Heidelberg (2012)
Peterson, G.L.: An O(nlogn) unidirectional algorithm for the circular extrema problem. TOPLAS 4, 758–762 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shibata, M., Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T. (2012). Algorithms for Partial Gathering of Mobile Agents in Asynchronous Rings. In: Baldoni, R., Flocchini, P., Binoy, R. (eds) Principles of Distributed Systems. OPODIS 2012. Lecture Notes in Computer Science, vol 7702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35476-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-35476-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35475-5
Online ISBN: 978-3-642-35476-2
eBook Packages: Computer ScienceComputer Science (R0)