Nothing Special   »   [go: up one dir, main page]

Skip to main content

Color and Texture Image Segmentation

  • Conference paper
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2012)

Abstract

For applications, such as image recognition or scene understanding, we cannot process the whole image directly for the reason that it is inefficient and unpractical. Therefore, to reduce the complexity of the recognition of the image, segmentation is a necessary step. Image segmentation divides an image into several parts (regions) according to some local homogeneous features of the image. For this purpose, understanding of the features of the image is important. Features such as color, texture, and patterns are considered for segmentation. Therefore, the thrust of our work is on the extraction of color textural features from images. Color measurement is done in Gaussian color space and texture features are extracted with Gabor filters. The paper proposes image segmentation based on recursive splitting k-means method and experiments are focused on color natural images taken from Berkeley Segmentation Dataset (BSD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.handprint.com/HP/WCL/color2.html

  2. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html

  3. Aniyeva, S.: Color Differential Stucture. Image and Signal Processing (2007)

    Google Scholar 

  4. Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 55–73 (1990)

    Article  Google Scholar 

  5. Elewa, A.T.M.: Morphometrics for nonmorphometricians. LNES , vol. 124. Springer (2010)

    Google Scholar 

  6. Fu, K.S., Mui, J.K.: A survey on image segmentation. Pattern Recognition 13, 3–16 (1981)

    Article  MathSciNet  Google Scholar 

  7. Gårding, J., Lindeberg, T.: Direct computation of shape cues using scale-adapted spatial derivative operators. International Journal of Computer Vision 17(2), 163–191 (1996)

    Article  Google Scholar 

  8. Geusebroek, J.-M., van den Boomgaard, R., Smeulders, A.W.M., Dev, A.: Color and Scale: The Spatial Structure of Color Images. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 331–341. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Ho, P.-G.: Image segmentation. InTech (2011)

    Google Scholar 

  10. Ilea, D.E., Whelan, P.F.: Image segmentation based on the integration of colour-texture descriptors - a review. Pattern Recognition 44, 2479–2501 (2011)

    Article  MATH  Google Scholar 

  11. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  12. Koenderink, J., Doorn, A.V.: Generic neighborhood operators. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(6), 597–605 (1992)

    Article  Google Scholar 

  13. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)

    Article  Google Scholar 

  14. Prasad, S.N., Domke, J.: Gabor filter visualization, http://www.cs.umd.edu/class/spring2005/cmsc838s/assignment-projects/gabor-filter-visualization/report.pdf

  15. Ray, S., Turi, R.H.: Determination of number of clusters in k-means clustering and application in colour image segmentation. In: Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques (ICAPRDT 1999), pp. 137–143. Narosa Publishing House, New Delhi (1999)

    Google Scholar 

  16. ter Haar Romeny, B.M., Geusebroek, J.-M., Van Osta, P., van den Boomgaard, R., Koenderink, J.J.: Color Differential Structure. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 353–361. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Smith, L.I.: A tutorial on principal components analysis (2002), http://www.sccg.sk/~haladova/principal_components.pdf

  18. Tsai, D.M., Lin, C.T.: The evaluation of normalized cross correlations for defect detection. Pattern Recognition Letters 24, 2525–2535 (2003)

    Article  MATH  Google Scholar 

  19. Wang, H., Suter, D.: Color image segmentation using global information and local homogeneity. In: Proceedings of Seventh Conference on Digital Image Computing: Techniques and Applications, pp. 89–98 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kokil Kumar, C., Agarwal, A., Chillarige, R.R. (2012). Color and Texture Image Segmentation. In: Sombattheera, C., Loi, N.K., Wankar, R., Quan, T. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2012. Lecture Notes in Computer Science(), vol 7694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35455-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35455-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35454-0

  • Online ISBN: 978-3-642-35455-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics