Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interpolating between Random Walks and Shortest Paths: A Path Functional Approach

  • Conference paper
Social Informatics (SocInfo 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7710))

Included in the following conference series:

Abstract

General models of network navigation must contain a deterministic or drift component, encouraging the agent to follow routes of least cost, as well as a random or diffusive component, enabling free wandering. This paper proposes a thermodynamic formalism involving two path functionals, namely an energy functional governing the drift and an entropy functional governing the diffusion. A freely adjustable parameter, the temperature, arbitrates between the conflicting objectives of minimising travel costs and maximising spatial exploration. The theory is illustrated on various graphs and various temperatures. The resulting optimal paths, together with presumably new associated edges and nodes centrality indices, are analytically and numerically investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Theory, algorithms and applications. Prentice Hall (1993)

    Google Scholar 

  • Alamgir, M., von Luxburg, U.: Phase transition in the family of p-resistances. In: Neural Information Processing Systems (NIPS 2011), pp. 379–387 (2011)

    Google Scholar 

  • Bollobás, B.: Modern Graph Theory. Springer (1998)

    Google Scholar 

  • Borgatti, S.P.: Centrality and network flow. Social Networks 27, 55–71 (2005)

    Article  Google Scholar 

  • Brandes, U., Fleischer, D.: Centrality Measures Based on Current Flow. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 533–544. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Chebotarev, P.: A class of graph-geodetic distances generalizing the shortest-path and the resistance distances. Discrete Applied Mathematics 159, 295–302 (2010)

    Article  MathSciNet  Google Scholar 

  • Dubois-Ferrière, H., Grossglauser, M., Vetterli, M.: Valuable Detours: Least-Cost Anypath Routing. IEEE/ACM Transactions on Networking 19, 333–346 (2011)

    Article  Google Scholar 

  • Iryo, T., Shintaku, H., Senoo, S.: Experimental Study of Spatial Searching Behaviour of Travellers in Pedestrian Networks. In: 1st European Symposium on Quantitative Methods in Transportation Systems, EPFL Lausanne (2012) (contributed talk)

    Google Scholar 

  • Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer (1976)

    Google Scholar 

  • Farnsworth, K.D., Beecham, J.A.: How Do Grazers Achieve Their Distribution? A Continuum of Models from Random Diffusion to the Ideal Free Distribution Using Biased Random Walks. The American Naturalist 153, 509–526 (1999)

    Article  Google Scholar 

  • Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation. IEEE Transactions on Knowledge and Data Engineering 19, 355–369 (2007)

    Article  Google Scholar 

  • Freeman, L.C.: Centrality in networks: I. Conceptual clarification. Social Networks 1, 215–239 (1979)

    Article  Google Scholar 

  • Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks 13, 141–154 (1991)

    Article  MathSciNet  Google Scholar 

  • Kirchhoff, G.: On a deduction of Ohm’s laws, in connexion with the theory of electro-statics. Philosophical Magazine 37, 463 (1850)

    Google Scholar 

  • Newman, M.E.J.: A measure of betweenness centrality based on random walks. Social Networks 27, 39–54 (2005)

    Article  Google Scholar 

  • Noh, J.-D., Rieger, H.: Random walks on complex networks. Phys. Rev. Lett. 92, 118701 (2004)

    Article  Google Scholar 

  • Saerens, M., Achbany, Y., Fouss, F., Yen, L.: Randomized Shortest-Path Problems: Two Related Models. Neural Computation 21, 2363–2404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32, 425–443 (1969)

    Article  Google Scholar 

  • Yen, L., Saerens, M., Mantrach, A., Shimbo, M.: A Family of Dissimilarity Measures between Nodes Generalizing both the Shortest-Path and the Commute-time Distances. In: Proceedings of the 14th SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–793 (2008)

    Google Scholar 

  • Zhou, T.: Mixing navigation on networks. Physica A 387, 3025–3032 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bavaud, F., Guex, G. (2012). Interpolating between Random Walks and Shortest Paths: A Path Functional Approach. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds) Social Informatics. SocInfo 2012. Lecture Notes in Computer Science, vol 7710. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35386-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35386-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35385-7

  • Online ISBN: 978-3-642-35386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics