Nothing Special   »   [go: up one dir, main page]

Skip to main content

Query-Oriented Keyphrase Extraction

  • Conference paper
Information Retrieval Technology (AIRS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7675))

Included in the following conference series:

Abstract

People often issue informational queries to search engines to find out more about some entities or events. While a Wikipedia-like summary would be an ideal answer to such queries, not all queries have a corresponding Wikipedia entry. In this work we propose to study query-oriented keyphrase extraction, which can be used to assist search results summarization. We propose a general method for keyphrase extraction for our task, where we consider both phraseness and informativeness. We discuss three criteria for phraseness and four ways to compute informativeness scores. Using a large Wikipedia corpus and 40 queries, our empirical evaluation shows that using a named entity-based phraseness criterion and a language model-based informativeness score gives the best performance on our task. This method also outperforms two state-of-the-art baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, P., Craswell, N., de Vries, A.P., Soboroff, I.: Overview of the TREC 2007 enterprise track. In: Proceedings of the 16th Text Retrieval Conference (2007)

    Google Scholar 

  2. Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2010 entity track. In: Proceedings of the 19th Text Retrieval Conference (2010)

    Google Scholar 

  3. Balog, K., de Vries, A.P., Serdyukov, P., Thomas, P., Westerveld, T.: Overview of the TREC 2009 entity track. In: Proceedings of the 18th Text Retrieval Conference (2009)

    Google Scholar 

  4. Blanco, R., Zaragoza, H.: Finding support sentences for entities. In: SIGIR, pp. 339–346 (2010)

    Google Scholar 

  5. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)

    Article  Google Scholar 

  6. Craswell, N., de Vries, A.P., Soboroff, I.: Overview of the TREC-2005 enterprise track. In: Proceedings of the 14th Text Retrieval Conference (2005)

    Google Scholar 

  7. Demartini, G., Iofciu, T., de Vries, A.P.: Overview of the INEX 2009 Entity Ranking Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 254–264. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Demartini, G., Missen, M.M.S., Blanco, R., Zaragoza, H.: Entity summarization of news articles. In: SIGIR, pp. 795–796 (2010)

    Google Scholar 

  9. Demartini, G., Missen, M.M.S., Blanco, R., Zaragoza, H.: Taer: time-aware entity retrieval-exploiting the past to find relevant entities in news articles. In: CIKM, pp. 1517–1520 (2010)

    Google Scholar 

  10. Demartini, G., de Vries, A.P., Iofciu, T., Zhu, J.: Overview of the INEX 2008 Entity Ranking Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 243–252. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: ACL, pp. 363–370 (2005)

    Google Scholar 

  12. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific keyphrase extraction. In: IJCAI, pp. 668–673 (1999)

    Google Scholar 

  13. Hasan, K.S., Ng, V.: Conundrums in unsupervised keyphrase extraction: Making sense of the state-of-the-art. In: COLING, pp. 365–373 (2010)

    Google Scholar 

  14. Jansen, B.J., Booth, D.L., Spink, A.: Determining the informational, navigational, and transactional intent of Web queries. IP&M 44(3), 1251–1266 (2008)

    Google Scholar 

  15. Leouski, A.V., Croft, W.B.: An evaluation of techniques for clustering search results. Tech. rep., University of Massachusetts at Amherst (1996)

    Google Scholar 

  16. Mihalcea, R., Tarau, P.: TextRank: Bringing order into texts. In: EMNLP, Barcelona, Spain (2004)

    Google Scholar 

  17. Qazvinian, V., Radev, D.R., Ozgur, A.: Citation summarization through keyphrase extraction. In: COLING, Beijing, China, pp. 895–903 (2010)

    Google Scholar 

  18. Soboroff, I., de Vries, A.P., Craswell, N.: Overview of the TREC 2006 enterprise track. In: Proceedings of the 15th Text Retrieval Conference (2006)

    Google Scholar 

  19. Tomokiyo, T., Hurst, M.: A language model approach to keyphrase extraction. In: Proceedings of ACL Workshop on Multiword Expressions, pp. 33–40 (2003)

    Google Scholar 

  20. Turney, P.D.: Learning algorithms for keyphrase extraction. Information Retrieval 2(4), 303–336 (2000)

    Article  Google Scholar 

  21. Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood knowledge. In: Proceedings of the 23rd National Conference on Artificial Intelligence, pp. 855–860 (2008)

    Google Scholar 

  22. Wan, X., Yang, J., Xiao, J.: Towards an iterative reinforcement approach for simultaneous document summarization and keyword extraction. In: ACL, pp. 552–559 (2007)

    Google Scholar 

  23. Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., Ma, J.: Learning to cluster web search results. In: SIGIR, pp. 210–217 (2004)

    Google Scholar 

  24. Zhao, X., Jiang, J., He, J., Song, Y., Achanauparp, P., Lim, E.-P., Li, X.: Topical keyphrase extraction from twitter. In: ACL-HLT, pp. 379–388 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qiu, M., Li, Y., Jiang, J. (2012). Query-Oriented Keyphrase Extraction. In: Hou, Y., Nie, JY., Sun, L., Wang, B., Zhang, P. (eds) Information Retrieval Technology. AIRS 2012. Lecture Notes in Computer Science, vol 7675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35341-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35341-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35340-6

  • Online ISBN: 978-3-642-35341-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics