Abstract
Existing works in user profiling suffers from two well known problems in IR: polysemy and synonymy. Enriching semantics to terms that represent user interests disambiguate it’s context, polysemous topics, and synonyms. One way of enriching semantics to terms is by grouping related terms together into clusters. This work exploits users’ tweets to build a Contextualized User Interest Profile(CUIP) that consist of clusters of (semantically) related terms and their term-weights. We propose two approaches to build the CUIP: svdCUIP based on Singular Value Decomposition (SVD); and, modsvdCUIP based on modded SVD (modSVD). We run experiments to determine the appropriate value of various parameters required for building CUIP, and also run experiments to compare the two proposed approaches in terms of clustering accuracy and clustering tendency. Results show that the clustering tendency and accuracy of the cluster structure modsvdCUIP is superior than the svdCUIP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Noll, M.G., Meinel, C.: Web Search Personalization Via Social Bookmarking and Tagging. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 367–380. Springer, Heidelberg (2007)
Vallet, D., Cantador, I., Jose, J.M.: Personalizing Web Search with Folksonomy-Based User and Document Profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010)
Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: SIGIR, pp. 155–162 (2008)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)
Kumar, H., Kim, H.-G.: Using Folksonomies for Building User Interest Profile. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 438–441. Springer, Heidelberg (2011)
Shepitsen, A., Gemmell, J., Mobasher, B., Buke, R.: Personalization in Folksonomies Based on Tag Clustering. In: AAAI 2008, pp. 37–48 (2008)
Simpson, E., Butler, M.H.: Analysing Communal Tag Relationships for Enhanced Navigation and User Modeling, pp. 43–64. IGI Global (2009)
Kaufman, L., Rousseeuw, P.J.: Introduction, in Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Inc., Hoboken (2008)
Liu, B.: Web Data Mining, 2nd edn. (2009)
Tan, P.N., Steinback, M., Kumar, V.: Introduction to Data Mining (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kumar, H., Kim, HG. (2012). Semantically Enriched Clustered User Interest Profile Built from Users’ Tweets. In: Hou, Y., Nie, JY., Sun, L., Wang, B., Zhang, P. (eds) Information Retrieval Technology. AIRS 2012. Lecture Notes in Computer Science, vol 7675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35341-3_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-35341-3_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35340-6
Online ISBN: 978-3-642-35341-3
eBook Packages: Computer ScienceComputer Science (R0)