Nothing Special   »   [go: up one dir, main page]

Skip to main content

Semantically Enriched Clustered User Interest Profile Built from Users’ Tweets

  • Conference paper
Information Retrieval Technology (AIRS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7675))

Included in the following conference series:

Abstract

Existing works in user profiling suffers from two well known problems in IR: polysemy and synonymy. Enriching semantics to terms that represent user interests disambiguate it’s context, polysemous topics, and synonyms. One way of enriching semantics to terms is by grouping related terms together into clusters. This work exploits users’ tweets to build a Contextualized User Interest Profile(CUIP) that consist of clusters of (semantically) related terms and their term-weights. We propose two approaches to build the CUIP: svdCUIP based on Singular Value Decomposition (SVD); and, modsvdCUIP based on modded SVD (modSVD). We run experiments to determine the appropriate value of various parameters required for building CUIP, and also run experiments to compare the two proposed approaches in terms of clustering accuracy and clustering tendency. Results show that the clustering tendency and accuracy of the cluster structure modsvdCUIP is superior than the svdCUIP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Noll, M.G., Meinel, C.: Web Search Personalization Via Social Bookmarking and Tagging. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 367–380. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Vallet, D., Cantador, I., Jose, J.M.: Personalizing Web Search with Folksonomy-Based User and Document Profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: SIGIR, pp. 155–162 (2008)

    Google Scholar 

  4. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)

    Article  Google Scholar 

  5. Kumar, H., Kim, H.-G.: Using Folksonomies for Building User Interest Profile. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 438–441. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Shepitsen, A., Gemmell, J., Mobasher, B., Buke, R.: Personalization in Folksonomies Based on Tag Clustering. In: AAAI 2008, pp. 37–48 (2008)

    Google Scholar 

  7. Simpson, E., Butler, M.H.: Analysing Communal Tag Relationships for Enhanced Navigation and User Modeling, pp. 43–64. IGI Global (2009)

    Google Scholar 

  8. Kaufman, L., Rousseeuw, P.J.: Introduction, in Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Inc., Hoboken (2008)

    Google Scholar 

  9. Liu, B.: Web Data Mining, 2nd edn. (2009)

    Google Scholar 

  10. Tan, P.N., Steinback, M., Kumar, V.: Introduction to Data Mining (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, H., Kim, HG. (2012). Semantically Enriched Clustered User Interest Profile Built from Users’ Tweets. In: Hou, Y., Nie, JY., Sun, L., Wang, B., Zhang, P. (eds) Information Retrieval Technology. AIRS 2012. Lecture Notes in Computer Science, vol 7675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35341-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35341-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35340-6

  • Online ISBN: 978-3-642-35341-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics